Have a personal or library account? Click to login
Analysis of numerical models of an integral bridge resting on an elastic half-space Cover

Analysis of numerical models of an integral bridge resting on an elastic half-space

Open Access
|Dec 2024

References

  1. Lock R. J. (2002). Integral Bridge Abutments. CUED/D-SOILS/TR320.
  2. Furtak K., Wrana B. (2005). Mosty zintegrowane. Wydawnictwo komunikacji i Łączności Warszawa, ISBN: 832061550X.
  3. Helowicz A. (2017). Wieloprzęsłowe wiadukty zintegrowane z przęsłami skrzynkowymi – doświadczenie projektanta. Acta Scientiarum Polonorum. Architectura, vol. 16, no. 3, (pp. 107–117).
  4. Helowicz A. (2020). Integral bridge and culvert design, Designer’s experience. Open Engineering, (Vol. 10, no. 1, Jun 2020).
  5. Helowicz A. (2021). Impact of subgrade and backfill stiffness on values and distribution of bending moments in integral box bridge, Studia Geotechnica et Mechanica, (Vol. 43, nr 2, pp. 90–98).
  6. Helowicz A. (2024). Modelling of foundation stiffness beneath intermediate support of 178 m long integral viaduct. Archives of Civil Engineering. No. 2/2024.
  7. BA42/96 (2003), The Design of Integral Bridges. Design Manual for Roads and Bridges, Volume 1, Section 3, Part 12. The Stationery Office, London, UK.
  8. Pipinato A. et al. (2022). Innovative Bridge Design Handbook, Construction Rehabilitation and Maintenance, Second Edition. Butterworth-Heinemann is an imprint of Elsevier, ISBN 9780128235508.
  9. Nicholson B. A. (1998). Integral abutments for prestressed beam bridges. Prestressed Concrete Association, ISBN 0950034770.
  10. Biddle A. R., Iles D. C., Yandzio E., (1997). Integral Steel Bridges – Design Guidance. The Steel Construction Institute Publication, SCI P163, ISBN 1859420532.
  11. Way J. A., Yandzio E. (1997). Integral Steel Bridges. Design of a Single-Span Bridge – Worked Example. The Steel Construction Institute Publication, SCI P180. ISBN 1859420567.
  12. Feldmann M., Naumes J., Pak D. et.al (2010). Economic and Durable Design of Composite Bridges with Integral Abutments – Design Guide. RFCS publications. ISBN 978-92-79-22157-6.
  13. Taylor, A.G.; Chung, J.H. (2022). Explanation and Application of the Evolving Contact Traction Fields in Shallow Foundation Systems. Geotechnics, (Vol. 2), 91–113. Available: https://doi.org/10.3390/geotechnics2010004.
  14. Luo S. De Luca F. De Risi R. et al. (2022). Challenges and perspectives for integral bridges in the UK: PLEXUS small-scale experiments. ICE Publishing. Available: https://doi.org/10.1680/jsmic.21.00020
  15. Stastny A., Stein R., Tschuchnigg F. (2022). Long-term monitoring of the transition zone of an integral railway bridge in Germany. International Symposium 11th Field Monitoring in Geomechanics.
  16. Stastny A., Knittel L., Meier T. Tschuchnigg F. (2022). Experimental determination of hypoplastic parameters and cyclic numerical analysis for railway bridge backfills. Acta Geotechnica, Springer.
  17. Reddy B. R., Reddy Ch. S. (2020). Seismic Performance Evaluation of a Fully Integral Concrete Bridge with End-Restraining Abutments. Journal of Engineering Sciences. (Vol.11, Issue2), ISSN NO: 0377-9254.
  18. Featherston. N., R. (2022). Parametric modelling of integral bridge soil spring reactions. Thesis for the degree of Master of Engineering (Research) in the Faculty of Civil Engineering at Stellenbosch University.
  19. Hambly E. C. (1991). Bridge deck behaviour, 2nd ed. E & FN Spon, London and New York.
  20. Gorbunov-Posadov M. I. (1949). Балки и плиты на упругом основании. Издательство Министерства Строительства Предприятий Машиностроения, Москва.
  21. Gorbunov-Posadov M. I. (1956). Obliczenie konstrukcji na podłożu sprężystym. Wydawnictwo Budownictwo i Architektura. Warszawa.
  22. Barkan D. D. (1962). Dynamics of Bases and Foundation. The McGraw-Hill Book Company, New York, USA.
  23. PN-EN 1992-1-1. (2008). Projektowanie konstrukcji z betonu. Część 1-1: Reguły ogólne I reguły dla betonów. PKN.
  24. Abaqus FEA Software, “Abaqus analysis user’s manual”, Version 2016, Dassault Systemes. [Online]. Available: http://130.149.89.49:2080/v2016/index.html.
  25. Lambe T.W., Whitman R.V. (1969). Soil Mechanics. John Wiley, New York, USA.
  26. Richart F. E., Hall J. R., Woods R. D. (1970). Vibrations of Soils and Foundations. Prentice-Hall, New Jersey, USA.
  27. Bowles J. E. (1997). Foundation analysis and design. Fifth Edition. The McGraw-Hill Companies, Inc. ISBN 0079122477, New York USA.
  28. PN-EN 1991-1-5. (2005). Oddziaływania na konstrukcje. Część 1-5: Oddziaływania ogólne. Odziaływania termiczne. PKN.
  29. Pakos W., Helowicz A. (2024). Theoretical and numerical modeling of a shallow foundation stiffness based on the theory of elastic half-space. The publication is accepted for publication in the journal Studia Geotechnica et Mechanica.
  30. Kuczma S. M., Świtka R. (1990). Bending of elastic beams on Winkler-type viscoelastic foundations with unilateral constrains. Computers and Structures, vol. 34, no 1, 125—136.
  31. Kuczma S. M. (1999). A viscoelastic-plastic model for skeletal structural systems with clearances. Computer Assisted Mechanics and Engineering Sciences, no 6, 83—106.
DOI: https://doi.org/10.2478/sgem-2024-0026 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 337 - 348
Submitted on: Apr 17, 2024
Accepted on: Nov 11, 2024
Published on: Dec 22, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Andrzej Helowicz, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.