Have a personal or library account? Click to login
Comparison of machine learning models predicting the pull-off strength of modified epoxy resin floors Cover

Comparison of machine learning models predicting the pull-off strength of modified epoxy resin floors

Open Access
|Nov 2024

References

  1. Szewczak, A., & Łagód, G. (2022). Adhesion of modified epoxy resin to a concrete Surface. Materials, 15(24), 8961.
  2. Chowaniec, A., Sadowski, Ł., & Żak, A. (2020). The chemical and microstructural analysis of the adhesive properties of epoxy resin coatings modified using waste glass powder. Applied Surface Science, 504, 144373.
  3. Zhang, C., Li, W., Liu, C., Zhang, C., Cao, L., Kong, D., ... & Chen, S. (2022). Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings. Journal of Colloid and Interface Science, 608, 1025–1039.
  4. Rudawska, A. (2024). The effects of temperature on mechanical properties of neat and montmorillonite reinforced epoxy compounds. The Journal of Adhesion, 1–34.
  5. Ebead, U., & Younis, A. (2019). Pull-off characterization of FRCM/Concrete interface. Composites Part B: Engineering, 165, 545–553.
  6. El Masri, Y., & Rakha, T. (2020). A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic inspections. Construction and Building Materials, 265, 120542.
  7. Hoła, J., & Sadowski, Ł. (2022). Non-destructive testing in civil engineering. Applied Sciences, 12(14), 7187.
  8. Ali-Benyahia, K., Kenai, S., Ghrici, M., Sbartaï, Z. M., & Elachachi, S. M. (2023). Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods. Construction and Building Materials, 366, 130161.
  9. Zapała-Sławeta, J. (2024). The use of computed tomography and scanning microscopy methods for assessing the alkaline reactivity of aggregate. Bulletin of the Polish Academy of Sciences Technical Sciences, e149814–e149814.
  10. Anjum, A., Hrairi, M., Aabid, A., Yatim, N., & Ali, M. (2024). Damage detection in concrete structures with impedance data and machine learning. Bulletin of the Polish Academy of Sciences Technical Sciences, e149178–e149178.
  11. Moj, M., & Czarnecki, S. (2024). Comparative analysis of selected machine learning techniques for predicting the pull-off strength of the surface layer of eco-friendly concrete. Advances in Engineering Software, 195, 103710.
  12. Song H., Ahmad A., Farooq F., Ostrowski K., Maślak M., Czarnecki S., Aslam F., Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms, Construction and Building Materials, 2021.
  13. Czarnecki S, Moj M. Comparative Analyses of Selected Neural Networks for Prediction of Sustainable Cementitious Composite Subsurface Tensile Strength. Applied Sciences. 2023, 13(8), 2023
  14. Noman, M., Khattak, A., Alam, Z., Yaqub, M., & Noroozinejad Farsangi, E. (2024). Predicting the Residual Compressive Strength of Concrete Exposed to Elevated Temperatures Using Interpretable Machine Learning. Practice Periodical on Structural Design and Construction, 29(4), 04024055.
  15. Shishegaran, A., Saeedi, M., Mirvalad, S., & Korayem, A. H. (2023). Computational predictions for estimating the performance of flexural and compressive strength of epoxy resin-based artificial stones. Engineering with Computers, 39(1), 347–372.
  16. Deix, K., & Tutic, S. (2023). Determination of the slip resistance of interspersed synthetic resin flooring with a convolutional neural network. Journal of Building Engineering, 76, 106721.
  17. Kampa, Ł., & Sadowski, Ł. (2023, July). The Effect of the Synergistic Application of Waste Granite Powder and Linen Fibers on the Adhesive Properties of Ecological Epoxy Coatings. In International Conference On Adhesive Bonding (pp. 53–81). Cham: Springer Nature Switzerland.
  18. ASTM D4541-17. Standard Test Method for Pull-off Strength of Coatings Using Portable Adhesion Testers. ASTM International: West Conshohocken, PA, USA, 2017; 06.02; pp. 1–6.
  19. Czarnecki, S., Sadowski, Ł., & Hoła, J. Evaluation of interlayer bonding in layered composites based on non-destructive measurements and machine learning: Comparative analysis of selected learning algorithms. Automation in Construction, 132, 103977. (2021)
  20. Barkhordari, M. S., Armaghani, D. J., Mohammed, A. S., & Ulrikh, D. V. (2022). Data-driven compressive strength prediction of fly ash concrete using ensemble learner algorithms. Buildings, 12(2), 132.
  21. Krzywiński, K., Sadowski, Ł., Fedoruk, K., & Sieradzki, A. (2023). Fundamental understanding of the thermal properties of amorphous epoxy resin coatings filled with quartz-feldspar powder sourced from quarry waste. Applied Surface Science, 614, 156133.
DOI: https://doi.org/10.2478/sgem-2024-0024 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 377 - 388
Submitted on: Jul 7, 2024
Accepted on: Sep 18, 2024
Published on: Nov 10, 2024
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mateusz Moj, Łukasz Kampa, Sławomir Czarnecki, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.