Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:
![Violin plot of the parameter: a) amount of Component A [%], b) amount of Component B [%], c) amount of granite powder [%], d) amount of linen fibers [%], e) density [g/cm3], and f) fb [MPa].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/64737a3e4e662f30ba53f8da/j_sgem-2024-0024_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20251205%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20251205T010316Z&X-Amz-Expires=3600&X-Amz-Signature=4c5f5d00fc2d35909196da3e05cea602b57202b581aca532964e2069f6c61054&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

Elements of the decision tree and random forest algorithm_
| Number of input categories | Depth of trees | Number of trees (only for RF) | Minimum subset to be divided | Minimum number of categories in the leaf |
|---|---|---|---|---|
| 5 | 1–20 | 20–200 | 5 | 2 |
Descriptive statistics of the input and output parameters_
| Min. | Max. | St.dev. | Mean | Range | |
|---|---|---|---|---|---|
| Amount of Component A [%] | 0,455 | 0,752 | 0,077 | 0,560 | 0,297 |
| Amount of Component B [%] | 0,155 | 0,310 | 0,035 | 0,252 | 0,105 |
| Amount of granite powder [%] | 0,000 | 0,375 | 0,112 | 0,182 | 0,375 |
| Amount of linen fibers [%] | 0,000 | 0,015 | 0,005 | 0,006 | 0,015 |
| Density [g/cm3] | 1,100 | 1,306 | 0,060 | 1,196 | 0,206 |
| fb [MPa] | 1,950 | 3,520 | 0,223 | 2,546 | 1,570 |
Summary of correlation coefficients R, RMSE, and average percentage forecast errors MAPE for selected models_
| AI Model | Statistical metrics | ||
|---|---|---|---|
| R [-] | RMSE [MPa] | MAPE [%] | |
| Linear regression | 0,6277 | 0,2299 | 7,4244 |
| Decision tree | 0,8310 | 0,1643 | 4,0814 |
| Random forest | 0,8848 | 0,1376 | 3,7156 |
| Artificial neural networks | 0,8744 | 0,1312 | 3,8098 |