Have a personal or library account? Click to login
Second-order effects in horizontally loaded reinforced concrete columns Cover

Second-order effects in horizontally loaded reinforced concrete columns

Open Access
|Dec 2023

Figures & Tables

Figure 1:

Basic Euler model.
Basic Euler model.

Figure 2:

σc=σc (ɛc) diagram for C30/37 concrete with equation approximating this relation.
σc=σc (ɛc) diagram for C30/37 concrete with equation approximating this relation.

Figure 3:

Relative stiffness-relative moment diagram.
Relative stiffness-relative moment diagram.

Figure 4:

Relative curvature κd=f(m) versus relative moment for n=0.8, concrete C30/37, ρ1=ρ2=1%.
Relative curvature κd=f(m) versus relative moment for n=0.8, concrete C30/37, ρ1=ρ2=1%.

Figure 5:

Beam division taking fixing conditions into account: a) corbel column, b) pin-supported column.
Beam division taking fixing conditions into account: a) corbel column, b) pin-supported column.

Exemplary results of iterative determination of 2nd order moment for 6_0 m high column_

IterationQuantity [−]Cross section no.Moment increment [%]

0123456
0m00.25000.20830.16670.12500.08330.04170.0000
κd0.00220.00160.00110.00070.00040.00020.0000
w0.00000.00220.00760.01510.02400.03370.0438
Δm0.02190.02080.01810.01440.00990.00510.0000
1m0.27190.22910.18480.13940.09330.04670.00008.760
κd0.00250.00190.00130.00080.00050.00020.0000
w0.00000.00250.00880.01770.02820.03960.0515
Δm0.02580.02450.02130.01690.01170.00600.0000
2m0.27580.23280.18800.14190.09500.04760.00001.417
κd0.00260.00190.00130.00080.00050.00020.0000
w0.00000.00260.00910.01820.02900.04070.0529
Δm0.02650.02520.02190.01740.01200.00610.0000
4m0.27660.23360.18870.14250.09540.04780.00000.048
κd0.00260.00190.00130.00080.00050.00020.0000
w0.00000.00260.00910.01830.02910.04090.0532
Δm0.02660.02530.02210.01750.01210.00610.0000
5m0.27660.23360.18870.14250.09540.04780.00000.009
κd0.00260.00190.00130.00080.00050.00020.0000
w0.00000.00260.00910.01830.02910.04090.0532
Δm0.02660.02530.02210.01750.01210.00610.0000
6m0.27660.23360.18870.14250.09540.04780.00000.002
κd0.00260.00190.00130.00080.00050.00020.0000
w0.00000.00260.00910.01830.02910.04090.0532
Δm0.02660.02530.02210.01750.01210.00610.0000
7m0.27660.23370.18870.14250.09540.04780.00000

Selected calculation results for different column heights l and relative forces n, obtained using nominal curvature method_

Quantityn=0.1n=0.5n=0.8
l [m]6.08.010.012.06.08.010.012.06.08.010.012.0
l0 [m]121620241216202412162024
Kr1.0 1.0 0.669
d/r0 =κ0 d4.83·10−3
d/r=κd4.83·10−3 3.23·10−3
Δm0.0280.0490.0770.1110.1390.2470.3860.5560.1490.2650.4130.595
m0ED,max0.2040.1830.1550.1210.1940.086--0.104---

Selected calculation results for different column heights l and relative forces n, obtained using general method_

Quantityn=0.1n=0.5n=0.8
l [m]6.08.010.012.06.08.010.012.06.08.010.012.0
m0ED,max0.220.2150.2050.1950.320.280.230.170.330.270.190.13
m*0ED,max0.220.210.2050.1950.290.260.220.170.240.180.160.12

Basic parameters of concrete grades_

GradeC30C35C40C45C50C55C60C70C80C90
fcm [MPa]38434853586368788898
ɛc1 [‰]2.22.252.32.42.452.52.62.72.82.8
Ecm [GPa]32343536373839414244
A0.8840.8300.7660.7130.6700.6330.6020.5520.5010.471
B−0.207−0.198−0.189−0.174−0.167−0.160−0.148−0.137−0.128−0.128
C−0.025−0.059−0.104−0.120−0.146−0.167−0.167−0.189−0.213−0.243
k1.9451.8681.7611.7121.6411.5831.5661.4901.4031.320
ηmax1.5911.5561.5221.4581.4291.2801.1541.0371.0001.000

Selected calculation results for different column heights l and relative forces n, obtained using nominal stiffness method_

Quantityn=0.1n=0.5n=0.8
l [m]6.08.010.012.06.08.010.012.06.08.010.012.0
l0 [m]121620241216202412162024
λ751001251507510012515075100125150
k20.0440.0590.0730.0880.20.20.20.20.20.20.20.2
NB/NEd7.764.603.102.262.451.380.880.611.530.860.550.38
mEd/m0Ed1.151.291.491.821.713.70--2.93---

m*0ED,max values for three methods used_

n=0.1n=0.5n=0.8
l [m]6.08.010.012.06.08.010.012.06.08.010.012.0
(1)0.2040.1830.1550.1210.1940.086--0.104---
(2)0.2020.1800.1560.1270.1950.090--0.086---
(3)0.2200.2100.2050.1950.2900.2600.2200.1700.2400.1800.1600.120

Exemplary results of κd=f(m) relation determination for n=0_8, concrete C30/37, ρ1=ρ2=1%_

ɛcɛdɛs1ɛs2ncns1ns2mm/κdκdNotes

[‰][‰][‰][‰][−][−][−][−][−][−]
0.4560.4560.4560.4560.7150.0430.0430.000181.50.00000whole cross section compressed (part 1 in figs 3 and 4)
0.4900.4220.4280.4840.7150.0400.0450.011181.50.00006
0.6000.3150.3410.5740.7140.0320.0540.047181.40.00026
0.7000.2220.2650.6570.7140.0250.0610.079181.10.00043
0.8000.1310.1920.7390.7130.0180.0690.110180.70.00061
0.9000.0430.1210.8220.7120.0110.0770.140180.20.00078

Exemplary results of iterative determination of 2nd order moment for 12_0 m high column_

IterationQuantity [−]Cross section no.Moment increment [%]

0123.9101112
0m0.180.1650.150.135.0.0450.030.0150
κd0.0010.0010.0010.001.0.0000.0000.0000.000
w0.0000.0010.0050.010.0.0650.0770.0890.101
Δm0.0510.0500.0480.046.0.0180.0120.0060.000
1m0.2310.2150.1980.181.0.0630.0420.0210.00028.10
κd0.0020.0020.0010.001.0.0000.0000.0000.000
w0.0000.0020.0070.015.0.1030.1220.1400.159
Δm0.0800.0790.0760.072.0.0280.0190.0090.000
2m0.2600.2440.2260.207.0.0730.0490.0240.00012.59
κd0.0020.0020.0020.002.0.0000.0000.0000.000
w0.0000.0020.0090.019.0.1290.1520.1750.199
Δm0.0990.0980.0950.090.0.0350.0230.0120.000
3m0.2790.2630.2450.225.0.0800.0530.0270.0007.60
κd0.0030.0020.0020.002.0.0000.0000.0000.000
w0.0000.0030.0100.022.0.1480.1750.2010.228
Δm0.1140.1130.1090.103.0.0400.0270.0130.000
...........
7m0.3230.3060.2870.265.0.0950.0630.0320.0002.56
κd0.0030.0030.0030.002.0.0000.0000.0000.000
w0.0000.0030.0130.028.0.1960.2300.2650.300
Δm0.1500.1480.1440.136.0.0520.0350.0180.000
..........
11m0.3470.3300.3100.287.0.1030.0690.0350.0001.52
κd0.0040.0040.0030.003.0.0010.0000.0000.000
w0.0000.0040.0150.032.0.2240.2640.3040.344
Δm0.1720.1700.1650.156.0.0600.0400.0200.000
............
15m0.3650.3480.3270.303.0.1100.0730.0370.0001.17
κd0.0040.0040.0040.003.0.0010.0000.0000.000
w0.0000.0040.0170.036.0.2480.2910.3360.380
Δm0.1900.1880.1820.172.0.0660.0440.0220.000
16m0.3700.3530.3320.307.0.1110.0740.0370.0001.32
κd0.0050.0040.0040.003.0.0010.0000.0000.000
w0.0000.0050.0180.038.0.2580.3030.3490.395
Δm0.1970.1950.1880.178.0.0680.0460.0230.000
17m0.3770.3600.3380.313.0.1130.0760.0380.0001.96

Results of calculations of maximum 1st order moment m0ED,max for different column heights l and relative forces n done acc_ to standard stiffness method_

Quantityn=0.1n=0.5n=0.8
l [m]6.08.010.012.06.08.010.012.06.08.010.012.0
mEd/m0Ed1.151.291.491.821.713.70--2.93---
m0ED,max0.2020.1800.1560.1270.1950.09--0.086
DOI: https://doi.org/10.2478/sgem-2023-0022 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 1 - 13
Submitted on: Jun 26, 2023
Accepted on: Sep 21, 2023
Published on: Dec 31, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Janusz Pędziwiatr, Michał Musiał, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 45 (2023): Issue 4 (December 2023)