Have a personal or library account? Click to login
Application of Clay–rubber Mixtures for the Transportation Geotechnics—the Numerical Analysis Cover

Application of Clay–rubber Mixtures for the Transportation Geotechnics—the Numerical Analysis

Open Access
|Oct 2023

References

  1. Akbarimehr, D., Aflaki, E. (2018). An Experimental Study on the Effect of Tire Powder on the Geotechnical Properties of Clay Soils. Civ. Eng. J., 4, 594.
  2. Akbulut, S., Arasan, S. and Kalkan, E. (2007). Modification of Clayey Soils using Scrap Tire Rubber and Synthetic Fibers. Appl. Clay Sci., 38, pp. 23–32.
  3. ASTM D2487-11 (2017). In Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: Philadelphia, PA, USA.
  4. Batog, A., Stilger-Szydło, E. (2018). Stability of road earth structures in the complex and complicated ground conditions. Studia Geotechnica et Mechanica, 40(4).
  5. Cała, M. (2007). Canvex and concave slope stability analyses with numerical methods. Archives of Mining Science, 52(1), pp. 75–89.
  6. Cetin, H., Fener, M. and Gunaydin, O. (2006). Geotechnical Properties of Tire-Cohesive Clayey Soil Mixtures as a Fill Material. Eng. Geol., 88, pp. 110–120.
  7. Commend, S., Kivell, S., Obrzud, R., Podleś, K. and Truty, A. (2020). Computational Geomechanics & Applications with ZSOIL.PC. Lausanne: Zace Services Ltd, Software Engineering, 2020.
  8. Das, C., Ghosh, A. (2020). Study on River Bed Material and Numerical Analysis of Stabilized Road Embankment on Soft Soil. In: Prashant, A., Sachan, A., Desai, C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, , vol 55. Springer, Singapore.
  9. Das, T., Singh, B. (2012). Strength Behaviour of Cohesive Soil-Fly Ash-Waste Tyre Mixtures. In Proceedings of the SAITM Research Symposium on Engineering Advancements, University of Moratuwa, Malabe, Sri Lanka, 27–28 April 2012, pp. 35–38. .
  10. Gomes Correia, A., Winter, M.G. and Puppala, A.J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, pp. 21–28.
  11. Griffiths, D.V., Lane, P.A. (1999). Slope stability analysis by finite elements, Geotechnique, 49, pp. 387–403.
  12. Gryczmański, M. (1995). Introduction to the description of elastic-plastic soil models. Committee of Civil and Water Engineering of the Polish Academy of Sciences, no 40, Warszawa. (in Polish)
  13. Gryczmański, M. (2009). State of the art in modelling of soil behaviour at small strains, ACEE Archit. Civ. Eng. Environ., 2(1), pp. 61–80.
  14. Head, K.H. (2006). Manual of Soil Laboratory Testing: Soil Classification and Compaction Test, 3rd ed.; Whittles Publishing: Scotland, UK, Volume 1.
  15. Holtz, W.G.; Gibbs, H.J. (1956). Engineering Properties of Expansive Clays. Trans. Am. Soc. Civ. Eng., 121, 641–663.
  16. Indraratna, B., Rujikiatkamjorn, C., Tawk, M. and Heitor, A. (2019). Compaction, Degradation and Deformation Characteristics of an Energy Absorbing Matrix. Transp. Geotech., 19, pp. 74–83.
  17. Jastrzębska, M. (2010). Investigations of the Behaviour of Cohesive Soils Subject to Cyclic Loads in the Area of Small Deformations, Monograph, D.S., Ed., Silesian University of Technology Publishers: Gliwice, Poland.
  18. Jastrzębska, M. (2019). Strength Characteristics of Clay-Rubber Waste Mixtures in UU Triaxial Tests. Geosciences, 9(8):352.
  19. Jastrzębska, M. (2010). The External and Internal Measurement Impact on Shear Modulus Distribution within Cyclic Small Strains in Triaxal Studies into Cohesive Soil. In Proceedings of the EPJ Web of Conferences, Poitier, France, 10 June 2010, Volume 6, p. 22014.
  20. Jastrzębska, M. (2010). The Influence of Overconsolidation Ratio on the “Gs-e1” Dependence for Cyclic Loading of Cohesive Soils in the Range of Small Strains. Studia Geotechnica et Mechanica, 32, pp. 17–28.
  21. Jastrzębska, M. (2010). The Influence of Selected Parameters of Cyclic Process on Cohesive Soils Shear Characteristics at Small Strains. Arch. Civ. Eng., 56, pp. 89–107.
  22. Jastrzębska, M., Kazimierowicz-Frankowska, K., Chiaro, G. and Rybak, J. (2023). New Frontiers in Sustainable Geotechnics. Applied Sciences., 13(1):562.
  23. Jastrzębska, M., Łupieżowiec, M. (2018). Analysis of the causes and effects of landslides in the Carpathian Flysh in the area of Milówka commune and evaluation of the methods of their prevention, Annal. Warsaw Univ. Life Sci. – SGGW, Land Reclamation, 50(2), pp. 195–211.
  24. Jastrzębska, M, Tokarz, K. (2021). Strength Characteristics of Clay–Rubber Waste Mixtures in Low-Frequency Cyclic Triaxial Tests. Minerals. 2021, 11(3):315.
  25. Kalantari, B. (2012). Foundations on Expansive Soils: A Review. Res. J. Appl. Sci. Eng. Technol., 4, pp. 3231–3237.
  26. Kalkan, E. (2013). Preparation of Scrap Tire Rubber Fiber–Silica Fume Mixtures for Modification of Clayey Soils. Appl. Clay Sci., 80–81, pp. 117–125.
  27. Kliszczewicz, B., Kowalska, M. (2020). Numerical Study of the Use of Tyre-Derived-Aggregate (TDA) as the Backfill Above Flexible PVC Pipeline. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Prague, Czech Republic, 15–19 June 2020, Vol. 960, pp. 32–44.
  28. Kowalska, M., Chmielewski, M. (2017). Mechanical Parameters of Rubber-Sand Mixtures for Numerical Analysis of a Road Embankment. In Proceedings of the IOP Conference Series, Materials Science and Engineering, Beijing, China, 24–27 October 2017, Vol. 245:052003.
  29. Kowalska, M., Jastrzębska, M. (2017). Swelling of Cohesive Soil with Rubber Granulate. In: Analizy i Doświadczenia w Geoinżynierii, Bzówka, J., Łupieżowiec, M., Eds., Politechnika Śląska: Gliwice, Poland, Vol. 651, pp. 261–270.
  30. Łupieżowiec, M. (2013). The application of c–φ reduction method to estimate the bearing capacity of subsoil. ACEE Architecture Civil Engineering Environment, 6(4), pp. 35–43.
  31. Łupieżowiec, M., Rybak, J., Różański, Z., Dobrzycki, P., Jędrzejczyk, W. (2022). Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies, 15(16).
  32. Mickovski, S.B. (2021). Sustainable Geotechnics – Theory, Practice, and Applications. Sustainability, 13(9):5286.
  33. PKN-CEN ISO/TS 17892-8:2009 (2009). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 8: Unconsolidated Undrained Triaxial Test, PKN: Warszawa, Poland.
  34. PN-EN ISO 14688-2:2006 (2006). In Geotechnical Investigation and Testing – Determination and Classification of Soils – Part 2: Classification Rules, PKN: Warszawa, Poland.
  35. PN-EN ISO 17892-5:2017-06 (2017). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 5: Incremental Loading Oedometer Test; PKN: Warszawa, Poland.
  36. PN-EN ISO 17892-9:2018-05 (2020). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 9: Consolidated Triaxial Compression Test on Water Saturated, PKN: Warszawa, Poland.
  37. PN-EN 1997-1:2008 (Eurokode 7) (2008). Geotechnical design – Part 1: General principles. PKN: Warszawa, Poland.
  38. PN-S-02205:1998 (1998). Car roads, Spadeworks, Research and Requirements. PKN: Warszawa, Poland.
  39. Regulation (1999). Regulation of the Minister of Transport and Maritime Economy of March 2, 1999 on the technical conditions to be met by public roads and their location, Journal of Laws of 2016, pos. 124. (in Polish)
  40. Salunkhe, D.P., Bartakke, R.N., Chvan, G., Kothavale, P.R. and Digvijay P. (2017). An overview on methods for slope stability analysis. International Journal of Engineering Research & Technology (IJERT), 6(3), pp. 528–535.
  41. Sloan, S.W. (2013). Geotechnical stability analysis. Geotechnique, 63(7), pp. 531–571.
  42. Soltani, A., Deng, A., Taheri, A., Mirzababaei, M. and Vanapalli, S.K. (2019). Deng Swell–Shrink Behavior of Rubberized Expansive Clays During Alternate Wetting and Drying. Minerals, 9, 224.
  43. Soltani, A., Deng, A., Taheri, A. and Sridharan, A. (2019). Swell–Shrink–Consolidation Behavior of Rubber–Reinforced Expansive Soils. Geotech. Test. J., 42, pp. 761–788.
  44. Ślusarek, J., Łupieżowiec, M. (2020). Analysis of the influence of soil moisture on the stability of a building based on a slope. Engineering Failure Analyses, 113:104534.
  45. Tafti, M.F., Emadi, M.Z. (2016). Impact of Using Recycled Tire Fibers on the Mechanical Properties of Clayey and Sandy Soils. Electron. J. Geotech. Eng., 21, pp.7113–7125.
  46. Tajdini, M., Nabizadeh, A., Taherkhani, H. and Zartaj, H. (2016). Effect of Added Waste Rubber on the Properties and Failure Mode of Kaolinite Clay. Int. J. Civ. Eng., 15, pp. 949–958.
  47. Urbański, A., Grodecki, M. (2019). Protection of a building against landslide. A case study and FEM simulations. Bulletin of the Polish Academy of Sciences-Technical Sciences, 67(3), pp. 657–664.
  48. Wasil, M., Zabielska-Adamska, K. (2022). Tensile Strength of Class F Fly Ash and Fly Ash with Bentonite Addition as a Material for Earth Structures. Materials,, 15(8):2887.
  49. Wysokiński, L. (2011). Evaluation of the stability of slopes and slopes. Security selection rules - instruction. Warszawa. (in Polish)
  50. Yadav, J.S., Tiwari, S.K. (2019). The Impact of End-of-Life Tires on the Mechanical Properties of Fine-Grained Soil: A Review. Environ. Dev. Sustain., 21, pp. 485–568.
  51. Zabielska-Adamska, K. (2020). Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment. Sustainability, 12(1):39.
  52. Zabielska-Adamska, K., Dobrzycki, P. and Wasil, M. (2023). Estimation of Stiffness of Non-Cohesive Soil in Natural State and Improved by Fiber and/or Cement Addition under Different Load Conditions. Materials, 16(1):417.
  53. Zheng, Y., Tang, X., Zhao, S., Deng, C. and Lei, W. (2009). Strength reduction and step-loading finite element approaches in geotechnical engineering, J. Rock Mech. Geotech. Eng., 1(1), pp. 21–30.
DOI: https://doi.org/10.2478/sgem-2023-0020 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 370 - 381
Submitted on: Feb 1, 2023
|
Accepted on: Aug 31, 2023
|
Published on: Oct 18, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Małgorzata Jastrzębska, Marian Łupieżowiec, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.