Have a personal or library account? Click to login
Modernized Resonant Column and Torsional Shearing Apparatus With Multipoint Contactless Displacement Detection System Cover

Modernized Resonant Column and Torsional Shearing Apparatus With Multipoint Contactless Displacement Detection System

Open Access
|Oct 2023

References

  1. Anestis, S., & Surendra, K. (1990). The modified “stiffened” Drnevich resonant column apparatus. Soils and Foundations, 30(3), pp. 53–68.
  2. ASTM Standard. (2000). Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column Method (ASTM D4015-92(2000)). doi:10.1520/D4015-92R00
  3. Bae, Y.-S., & Bay, J. (2009). Modifications of resonant column and torsional shear device for the large strain. Computers and Geotechnics, 36(6), pp. 944–952. doi:10.1016/j.compgeo.2009.02.004
  4. Bui, M. T., Priest, J. A., & Clayton, C. (2019). A New Calibration Technique to Improve Data Reduction for Stokoe Resonant Column Test: Energy and Geotechnics. Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering, (pp. 43–48). doi:10.1007/978-981-13-2306-5_3
  5. Bujko, M. (2021). Identification and description of elastoplastic deformation of soil in the range of small strain. [Doctoral dissertation, Bialystok University of Technology].
  6. Bujko, M., Srokosz, P. E., & Dyka, I. (2017). Use of Optical Method for Improvement of Soil Dynamic Tests in Torsional Shear Apparatus.
  7. 2017 Baltic Geodetic Congress (BGC Geomatics) (pp. 404–408). Gdansk: IEEE. doi:10.1109/BGC.Geomatics.2017.45
  8. Clayton, C. R., Priest, J. A., Bui, M. T., Zervos, A., & Kim, S. G. (2009). The Stokoe resonant column apparatus: effects of stiffness, mass and specimen fixity. Géotechnique, 59(5), pp. 429–437. doi:10.1680/geot.2007.00096
  9. Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves [Doctoral dissertation, The University of Texas at Austin]. ProQuest Dissertations Publishing.
  10. Desrues, J., Viggiani, G., & Bésuelle, P. (Eds.). (2006). Advances in X-ray tomography for geomaterials. ISTE.
  11. Drnevich, V., Werden, S., Ashlock, J., & Hall, J. (2015). Applications of the New Approach to Resonant Column Testing. Geotechnical Testing Journal, 38, p. 20140222. doi:10.1520/GTJ20140222
  12. Dyka, I., & Srokosz, P. E. (2012). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 1. Inżynieria Morska i Geotechnika, 6, pp. 700–707.
  13. Dyka, I., & Srokosz, P. E. (2014). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 2. Inżynieria Morska i Geotechnika, 2, pp. 118–129.
  14. Dyka, I., Srokosz, P. E., & Bujko, M. (2017). Influence of grain size distribution on dynamic shear modulus of sands. Open Engineering, 7, pp. 317–329.
  15. Gill, D., & Lehane, B. (2001). An optical technique for investigation soil displacement patterns. Geotechnical Testing Journal, 24(3), pp. 324–329.
  16. Huawen, X., Fook, H. L., Kai, Y., Jiahui, H., & Yong, L. (2019). Miniature LVDT setup for local strain measurement on cement-treated clay specimens. Marine Georesources & Geotechnology, 37(5), pp. 568–577. doi:10.1080/1064119X.2018.1460428
  17. Iskander, M. (2010). Optical Techniques in Geotechnical Engineering. In Modelling with Transparent Soils. Springer Series in Geomechanics and Geoengineering. (pp. 5–18). Springer. doi:10.1007/978-3-642-02501-3_2
  18. Kong, L., Sayem, H. M., & Tian, H. (2018). Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry. Canadian Geotechnical Journal, 55(2), pp. 208–216.
  19. Kuang, K. (2018). Wireless chemiluminescence-based sensor for soil deformation detection. Sensors and Acruators, 269, pp. 70–78. doi:10.1016/j.sna.2017.11.017
  20. Li, Z., Escoffier, S., & Kotronis, P. (2013). Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand. Soil Dynamics and Earthquake Engineering, 52, pp. 77–87. doi:10.1016/j.soildyn.2013.05.004
  21. Massarsch, K. R. (2004). Deformation properties of fine-grained soils from seismic tests. Keynote lecture. International Conference on Site Characterization, ISC’2. Porto.
  22. Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A., & Zornber, J. G. (2009). Geomaterial behaviour and testing. Proc. of the 17-th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandia.
  23. Srokosz, P. E., Bujko, M., Bocheńska, M., & Ossowski, R. (2021). Optical flow method for measuring deformation of soil specimen subjected to torsional shearing. Measurement, 174, p. 109064. doi:10.1016/j.measurement.2021.109064
  24. Srokosz, P. E., Dyka, I., Bujko, M., & Bocheńska, M. (2021). A Modified Resonant Column Device for In-Depth Analysis of Vibration in Cohesive and Cohesionless Soils. Energies, 14(20), p. 6647. doi:10.3390/en14206647
  25. Tyrologou, P., Dudeney, A. W. & Grattoni, C. A. (2005). Evolution of porosity in geotechnical composites. Magnetic Resonance Imaging, 23(6), p. 765–768.
  26. White, D. J., Take, W. A., & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), pp. 619–631.
  27. Wichtmann, T. (2016). Soil Behaviour under Cyclic Loading—Experimental Observations, Constitutive Description and Applications. [Habilitation, Karlsruhe Institute of Technology]. Karlsruhe, Germany.
  28. Wichtmann, T., & Triantafyllidis, T. (2020). Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of geotechnical and geoenvironmental engineering, 135(10), pp. 1404–1418. doi:10.1061/(ASCE)GT.1943-5606.0000096
  29. Xu, D. -S. (2017). A New Measurement Approach for Small Deformations of Soil Specimens Using Fiber Bragg Grating Sensors. Sensors, 17(5), p. 1016. doi:10.3390/s17051016
DOI: https://doi.org/10.2478/sgem-2023-0018 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 382 - 394
Submitted on: Feb 26, 2023
|
Accepted on: Sep 11, 2023
|
Published on: Oct 8, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Marcin Bujko, Marta Bocheńska, Piotr Srokosz, Ireneusz Dyka, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.