References
- Anestis, S., & Surendra, K. (1990). The modified “stiffened” Drnevich resonant column apparatus. Soils and Foundations, 30(3), pp. 53–68.
- ASTM Standard. (2000). Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column Method (ASTM D4015-92(2000)). doi:10.1520/D4015-92R00
- Bae, Y.-S., & Bay, J. (2009). Modifications of resonant column and torsional shear device for the large strain. Computers and Geotechnics, 36(6), pp. 944–952. doi:10.1016/j.compgeo.2009.02.004
- Bui, M. T., Priest, J. A., & Clayton, C. (2019). A New Calibration Technique to Improve Data Reduction for Stokoe Resonant Column Test: Energy and Geotechnics. Proceedings of the 1st Vietnam Symposium on Advances in Offshore Engineering, (pp. 43–48). doi:10.1007/978-981-13-2306-5_3
- Bujko, M. (2021). Identification and description of elastoplastic deformation of soil in the range of small strain. [Doctoral dissertation, Bialystok University of Technology].
- Bujko, M., Srokosz, P. E., & Dyka, I. (2017). Use of Optical Method for Improvement of Soil Dynamic Tests in Torsional Shear Apparatus.
- 2017 Baltic Geodetic Congress (BGC Geomatics) (pp. 404–408). Gdansk: IEEE. doi:10.1109/BGC.Geomatics.2017.45
- Clayton, C. R., Priest, J. A., Bui, M. T., Zervos, A., & Kim, S. G. (2009). The Stokoe resonant column apparatus: effects of stiffness, mass and specimen fixity. Géotechnique, 59(5), pp. 429–437. doi:10.1680/geot.2007.00096
- Darendeli, M. B. (2001). Development of a new family of normalized modulus reduction and material damping curves [Doctoral dissertation, The University of Texas at Austin]. ProQuest Dissertations Publishing.
- Desrues, J., Viggiani, G., & Bésuelle, P. (Eds.). (2006). Advances in X-ray tomography for geomaterials. ISTE.
- Drnevich, V., Werden, S., Ashlock, J., & Hall, J. (2015). Applications of the New Approach to Resonant Column Testing. Geotechnical Testing Journal, 38, p. 20140222. doi:10.1520/GTJ20140222
- Dyka, I., & Srokosz, P. E. (2012). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 1. Inżynieria Morska i Geotechnika, 6, pp. 700–707.
- Dyka, I., & Srokosz, P. E. (2014). Badania gruntu w aparacie skrętnego ścinania RC/TS. Część 2. Inżynieria Morska i Geotechnika, 2, pp. 118–129.
- Dyka, I., Srokosz, P. E., & Bujko, M. (2017). Influence of grain size distribution on dynamic shear modulus of sands. Open Engineering, 7, pp. 317–329.
- Gill, D., & Lehane, B. (2001). An optical technique for investigation soil displacement patterns. Geotechnical Testing Journal, 24(3), pp. 324–329.
- Huawen, X., Fook, H. L., Kai, Y., Jiahui, H., & Yong, L. (2019). Miniature LVDT setup for local strain measurement on cement-treated clay specimens. Marine Georesources & Geotechnology, 37(5), pp. 568–577. doi:10.1080/1064119X.2018.1460428
- Iskander, M. (2010). Optical Techniques in Geotechnical Engineering. In Modelling with Transparent Soils. Springer Series in Geomechanics and Geoengineering. (pp. 5–18). Springer. doi:10.1007/978-3-642-02501-3_2
- Kong, L., Sayem, H. M., & Tian, H. (2018). Influence of drying–wetting cycles on soil-water characteristic curve of undisturbed granite residual soils and microstructure mechanism by nuclear magnetic resonance (NMR) spin-spin relaxation time (T2) relaxometry. Canadian Geotechnical Journal, 55(2), pp. 208–216.
- Kuang, K. (2018). Wireless chemiluminescence-based sensor for soil deformation detection. Sensors and Acruators, 269, pp. 70–78. doi:10.1016/j.sna.2017.11.017
- Li, Z., Escoffier, S., & Kotronis, P. (2013). Using centrifuge tests data to identify the dynamic soil properties: Application to Fontainebleau sand. Soil Dynamics and Earthquake Engineering, 52, pp. 77–87. doi:10.1016/j.soildyn.2013.05.004
- Massarsch, K. R. (2004). Deformation properties of fine-grained soils from seismic tests. Keynote lecture. International Conference on Site Characterization, ISC’2. Porto.
- Mayne, P. W., Coop, M. R., Springman, S. M., Huang, A., & Zornber, J. G. (2009). Geomaterial behaviour and testing. Proc. of the 17-th International Conference on Soil Mechanics and Geotechnical Engineering. Alexandia.
- Srokosz, P. E., Bujko, M., Bocheńska, M., & Ossowski, R. (2021). Optical flow method for measuring deformation of soil specimen subjected to torsional shearing. Measurement, 174, p. 109064. doi:10.1016/j.measurement.2021.109064
- Srokosz, P. E., Dyka, I., Bujko, M., & Bocheńska, M. (2021). A Modified Resonant Column Device for In-Depth Analysis of Vibration in Cohesive and Cohesionless Soils. Energies, 14(20), p. 6647. doi:10.3390/en14206647
- Tyrologou, P., Dudeney, A. W. & Grattoni, C. A. (2005). Evolution of porosity in geotechnical composites. Magnetic Resonance Imaging, 23(6), p. 765–768.
- White, D. J., Take, W. A., & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), pp. 619–631.
- Wichtmann, T. (2016). Soil Behaviour under Cyclic Loading—Experimental Observations, Constitutive Description and Applications. [Habilitation, Karlsruhe Institute of Technology]. Karlsruhe, Germany.
- Wichtmann, T., & Triantafyllidis, T. (2020). Influence of the Grain-Size Distribution Curve of Quartz Sand on the Small Strain Shear Modulus Gmax. Journal of geotechnical and geoenvironmental engineering, 135(10), pp. 1404–1418. doi:10.1061/(ASCE)GT.1943-5606.0000096
- Xu, D. -S. (2017). A New Measurement Approach for Small Deformations of Soil Specimens Using Fiber Bragg Grating Sensors. Sensors, 17(5), p. 1016. doi:10.3390/s17051016