Have a personal or library account? Click to login
Compressive and Tensile Strength of Nano-clay Stabilised Soil Subjected to Repeated Freeze–Thaw Cycles Cover

Compressive and Tensile Strength of Nano-clay Stabilised Soil Subjected to Repeated Freeze–Thaw Cycles

Open Access
|Sep 2023

References

  1. Abbasi, N., Farjad, A., & Sepehri, S. (2018). The Use of Nano-clay Particles for Stabilization of Dispersive Clayey Soils. Geotechnical and Geological Engineering, 36(1), 327–335. https://doi.org/10.1007/s10706-017-0330-9
  2. Asgari, M. R., Baghebanzadeh Dezfuli, A., & Bayat, M. (2015). Experimental study on stabilization of a low plasticity clayey soil with cement/lime. Arabian Journal of Geosciences, 8(3), 1439–1452. https://doi.org/10.1007/s12517-013-1173-1
  3. Avazeh, A., & Asakereh, A. (2017). The Effects of Nano Clay on Dispersive Soils Behavior (Case Study of Minab City. Amirkabir J. Civil Eng, 49(3), 503–512. https://doi.org/10.22060/ceej.2016.868
  4. Ballari, M. M., Hunger, M., Hüsken, G., & Brouwers, H. J. H. (2009). Heterogeneous Photocatalysis Applied to Concrete Pavement for Air Remediation. Nanotechnology in Construction 3, 409–414. https://doi.org/10.1007/978-3-642-00980-8_56
  5. Bozbey, I., Kelesoglu, M. K., Demir, B., Komut, M., Comez, S., Ozturk, T., Mert, A., Ocal, K., & Oztoprak, S. (2018). Effects of soil pulverization level on resilient modulus and freeze and thaw resistance of a lime stabilized clay. Cold Regions Science and Technology, 151, 323–334. https://doi.org/10.1016/j.coldregions.2018.03.023
  6. Calabi Floody, M., Theng, B. K. G., Reyes, P., & Mora, M. L. (2009). Natural nano-clays: applications and future trends – a Chilean perspective. Clay Minerals, 44(2), 161–176. https://doi.org/10.1180/claymin.2009.044.2.161
  7. Chaduvula, U., Desai, A. K., & Solanki, C. H. (2014). Application of Triangular Polypropylene Fibres on Soil Subjected to Freeze-Thaw Cycles. Indian Geotechnical Journal, 44(3), 351–356. https://doi.org/10.1007/s40098-013-0088-9
  8. Changizi, F., & Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers: Ground Improvement, 170(2), 62–71. https://doi.org/10.1680/jgrim.15.00026
  9. Choobbasti, A. J., Samakoosh, M. A., & Kutanaei, S. S. (2019). Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Construction and Building Materials, 211, 1094–1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306
  10. Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286–295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  11. Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155–165. https://doi.org/10.1016/j.coldregions.2018.07.004
  12. Dusenkova, I., Stepanova, V., Vecstaudza, J., Lakevics, V., Malers, J., & Berzina-Cimdina, L. (2013). Rheological properties of Latvian illite clays. Acta Geodynamica et Geomaterialia, 10(4), 459–464. https://doi.org/10.13168/AGG.2013.0046
  13. Edil, T. B., & Cetin, B. (2018). Freeze-thaw performance of chemically stabilized natural and recycled highway materials. Sciences in Cold and Arid Regions, 7(5), 482–491. https://doi: 10.3724/SP.J.1226.2015.00482.
  14. Ghazavi, M., & Roustaei, M. (2013). Freeze-thaw performance of clayey soil reinforced with geotextile layer. Cold Regions Science and Technology, 89, 22–29. https://doi.org/10.1016/j.coldregions.2013.01.002
  15. Hussien, R. S., & Albusoda, B. S. (2023). Effect of permeation grouting with nano-materials on shear strength of sandy soil: An experimental study. In AIP Conference Proceedings (Vol. 2651, No. 1, p. 020024). AIP Publishing LLC. https://doi.org/10.1063/5.0132680
  16. Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21–29. https://doi.org/10.1016/j.coldregions.2012.05.012
  17. Jassem, S., & Tabarsa, A. (2015). Effect of Adding Nano-clay on the Mechanical Behaviour of Fine-grained Soil Reinforced with Polypropylene Fibers. Journal of Structural Engineering and Geotechnics, 5(2), 59–67. http://www.qjseg.ir/article_754.html
  18. Kalhor, A., Ghazavi, M., Roustaei, M., & Mirhosseini, S. M. (2019). Influence of nano-SiO2 on geotechnical properties of fine soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 161, 129–136. https://doi.org/10.1016/j.coldregions.2019.03.011
  19. Kalkan, E., Akbulut, S., Tortum, A., & Celik, S. (2009). Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environmental Geology, 58(7), 1429–1440. https://doi.org/10.1007/s00254-008-1645-x
  20. Kananizadeh, N., Ebadi, T., Ehsan, S., Khoshniat, S. A., & Khoshniat, A. (2011). Behavior of Nano-clay as an Additive in order to Reduce Kahrizak Landfill Clay Permeability. Proceeding of 2nd International Conference on Environmental Science and Technology, 6, 26–28. http://www.ipcbee.com/vol6/no1/12-F00023.pdf
  21. Konrad, J. M. (1989). Physical processes during freeze-thaw cycles in clayey silts. Cold Regions Science and Technology, 16(3), 291–303. https://doi.org/10.1016/0165-232X(89)90029-3
  22. Liu, H., Lyu, X., Wang, J., He, X., & Zhang, Y. (2020). The dependence between shear strength parameters and microstructure of subgrade soil in seasonal permafrost area. Sustainability (Switzerland), 12(3). https://doi.org/10.3390/su12031264
  23. Liu, J., Chen, Z., Kanungo, D. P., Song, Z., Bai, Y., Wang, Y., Li, D., & Qian, W. (2019). Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer. Engineering Geology, 252(September 2018), 125–135. https://doi.org/10.1016/j.enggeo.2019.03.003
  24. Mohammadi, Mina, & Choobbasti, A. J. (2018). The effect of self-healing process on the strength increase in clay. Journal of Adhesion Science and Technology, 32(16), 1750–1772. https://doi.org/10.1080/01694243.2018.1445070
  25. Mohammadi, Mostafa, & Niazian, M. (2013). Investigation of Nano-clay effect on geotechnical properties of rasht clay. International Journal of Advanced Scientific and Technical Research, 3(3), 37–46. http://rspublication.com/ijst/june13/5.pdf
  26. Movahedan, M., Abbasi, N., & Keramati, M. (2012). Wind erosion control of soils using polymeric materials. Eurasian Journal of Soil Science (Ejss), 1(2), 81 – 86. https://doi.org/10.18393/ejss.23002
  27. Olgun, M. (2013). The effects and optimization of additives for expansive clays under freeze-thaw conditions. Cold Regions Science and Technology, 93, 36–46. https://doi.org/10.1016/j.coldregions.2013.06.001
  28. Örnek, M., Atahan, A. O., Türedi, Y., Erdem, M. M., & Büyük, M. (2019). Soil based design of highway guardrail post depths using pendulum impact tests. Acta Geotechnica Slovenica, 16(2), 77–89. https://doi.org/10.18690/actageotechslov.16.2.77-89.2019
  29. Ornek, M., Demir, A., Yildiz, A., & Laman, M. (2012). Numerical analysis of circular footings on natural clay stabilized with a granular fill. Acta Geotechnica Slovenica, 9(1), 61–75.
  30. Padidar, M., Jalalian, A., Asgari, K., Abdouss, M., Najafi, P., Honarjoo, N., & Fallahzade, J. (2016). The impacts of nano-clay on sandy soil stability and atmospheric dust control. In Agriculturae Conspectus Scientificus (Vol. 81, Issue 4). https://hrcak.srce.hr/index.php?id_clanak_jezik=264558&show=clanak
  31. Pan, R., Yang, P., Shi, X., & Zhang, T. (2023). Effects of freeze–thaw cycles on the shear stress induced on the cemented sand–structure interface. Construction and Building Materials, 371, 130671. https://doi.org/10.1016/j.conbuildmat.2023.130671.
  32. Qi, J., Vermeer, P. A., & Cheng, G. (2006). A review of the influence of freeze-thaw cycles on soil geotechnical properties. In Permafrost and Periglacial Processes (Vol. 17, Issue 3, pp. 245–252). John Wiley & Sons, Ltd. https://doi.org/10.1002/ppp.559
  33. Rajczakowska, M., & Łydzba, D. (2016). Durability of crystalline phase in concrete microstructure modified by the mineral powders: Evaluation by nanoindentation tests. Studia Geotechnica et Mechanica, 38(1), 65–74. https://doi.org/10.1515/sgem-2016-0007
  34. Rajczakowska, M., Stefaniuk, D., & Łydżba, D. (2015). Microstructure Characterization by Means of X-ray Micro-CT and Nanoindentation Measurements. Studia Geotechnica et Mechanica, 37(1), 75–84. https://doi.org/10.1515/sgem-2015-0009
  35. Rezaei-Hosseinabadi, M. J., Bayat, M., Nadi, B., & Rahimi, A. (2021). Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil. Geomechanics and Geoengineering, 00(00), 1–11. https://doi.org/10.1080/17486025.2021.1940315
  36. Roustaei, M., Ghazavi, M., & Aliaghaei, E. (2016). Application of tire crumbs on mechanical properties of a clayey soil subjected to freeze-thaw cycles. Scientia Iranica, 23(1), 122–132. https://doi.org/10.24200/sci.2016.2103
  37. Roustaei, Mahya, Eslami, A., & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127–137. https://doi.org/10.1016/j.coldregions.2015.09.011
  38. Saadat, M., & Bayat, M. (2022). Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering, 17(1), 80–91. https://doi.org/10.1080/17486025.2019.1699668
  39. Hadi Sahlabadi, S., Bayat, M., Mousivand, M., & Saadat, M. (2021). Freeze–thaw durability of cement-stabilized soil reinforced with polypropylene/basalt fibers. Journal of Materials in Civil Engineering, 33(9), 04021232. https://doi.org/10.1061/(ASCE)MT.1943-5533.000h3905.
  40. Sahin, R., & Oltulu, M. (2008). New Materials for Concrete Technology: Nano Powders. 33rd Conference on OUR WORLD IN CONCRETE & STRUCTURES.
  41. Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2021). Experimental Study on Mechanical Properties of Cement-Stabilized Soil Blended with Crushed Stone Waste. KSCE Journal of Civil Engineering, 25(6), 1974–1984. https://doi.org/10.1007/s12205-021-0953-5
  42. Salehi, M., Bayat, M., Saadat, M., & Nasri, M. (2022). Prediction of unconfined compressive strength and California bearing capacity of cement- or lime-pozzolan-stabilised soil admixed with crushed stone waste. Geomechanics and Geoengineering, 00(00), 1–12. https://doi.org/10.1080/17486025.2022.2040606
  43. Sameni, A., Pourafshary, P., Ghanbarzadeh, M., & Ayatollahi, S. (2015). Effect of nanoparticles on clay swelling and migration. Egyptian Journal of Petroleum, 24(4), 429–437. https://doi.org/10.1016/j.ejpe.2015.10.006
  44. Sharo, A. A., & Alawneh, A. S. (2016). Enhancement of the Strength and Swelling Characteristics of Expansive Clayey Soil Using Nano-Clay Material. Geotechnical Special Publication, 2016-Janua(269 GSP), 451–457. https://doi.org/10.1061/9780784480120.046
  45. Shibi, T., & Kamei, T. (2014). Effect of freeze-thaw cycles on the strength and physical properties of cement-stabilised soil containing recycled bassanite and coal ash. Cold Regions Science and Technology, 106–107, 36–45. https://doi.org/10.1016/j.coldregions.2014.06.005
  46. Sivrikaya, O., Yavascan, S., & Cecen, E. (2014). Effects of ground granulated blastfurnace slag on the index and compaction parameters of clayey soils. Acta Geotechnica Slovenica, 11(1), 19–27.
  47. Steiner, A., Vardon, P. J., & Broere, W. (2018). The influence of freeze-thaw cycles on the shear strength of illite clay. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 171(1), 16–27. https://doi.org/10.1680/jgeen.16.00101
  48. Szostak-Chrzanowski, A., & Chrzanowski, A. (2014). Study of natural and man-induced ground deformation in mackenzie delta region. Acta Geodynamica et Geomaterialia, 11(2), 117–123. https://doi.org/10.13168/AGG.2013.0060
  49. Taha, M. R., & Taha, O. M. E. (2012). Influence of nano-material on the expansive and shrinkage soil behavior. Journal of Nanoparticle Research, 14(10), 1–13. https://doi.org/10.1007/s11051-012-1190-0
  50. Thomas, S., Chandrakaran, S., & Sankar, N. (2023). Effect of Nano-calcium carbonate on the Geotechnical and Microstructural Characteristics of Highly Plastic Paddy Clay. Arabian Journal for Science and Engineering, 1–13. https://doi.org/10.1007/s13369-023-07679-y
  51. Truty, A., & Obrzud, R. (2015). Improved Formulation of the Hardening Soil Model in the Context of Modeling the Undrained Behavior of Cohesive Soils. Studia Geotechnica et Mechanica, 37(2), 61–68. https://doi.org/10.1515/sgem-2015-0022
  52. Turkoz, M., Savas, H., Acaz, A., & Tosun, H. (2015). The effect of magnesium chloride solution on the engineering properties of clay soil with expansive and dispersive characteristics. Applied Clay Science, 101, 1–9. https://doi.org/10.1016/j.clay.2014.08.007
  53. Vaníček, I. (2013). The importance of tensile strength in geotechnical engineering. Acta Geotechnica Slovenica, 10(1), 5–17.
  54. Yilmaz, F., Kamiloʇlu, H. A., & Şadoʇlu, E. (2015). Soil stabilization with using waste materials against freezing thawing effect. Acta Physica Polonica A, 128(2), 392–394. https://doi.org/10.12693/APhysPolA.128.B-392
  55. Zahedi, M., Sharifipour, M., Jahanbakhshi, F., & Bayat, R. (2014). Nano-clay Performance on Resistance of Clay under Freezing Cycles. Journal of Applied Sciences and Environmental Management. https://www.ajol.info/index.php/jasem/article/view/109900
  56. Zhang, D., Zhou, C. H., Lin, C. X., Tong, D. S., & Yu, W. H. (2010). Synthesis of clay minerals. In Applied Clay Science (Vol. 50, Issue 1, pp. 1–11). Elsevier. https://doi.org/10.1016/j.clay.2010.06.019
  57. Waleed, M., Liaqat, N., Jamil, M. A. B., Khalid, R. A., & Jamil, S. M. (2023). Unconfined compressive strength and freeze-thaw behavior of silty clay soils treated with bio-enzyme. Arabian Journal of Geosciences, 16(4), 1–11. https://doi.org/10.1007/s12517-023-11375-4.
DOI: https://doi.org/10.2478/sgem-2023-0009 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 221 - 230
Submitted on: Oct 22, 2022
Accepted on: May 13, 2023
Published on: Sep 1, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Mahya Roustaei, Mahdi Sabetraftar, Ehsan Taherabadi, Meysam Bayat, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.