Have a personal or library account? Click to login
The Temperature Field Effect on Dynamic Stability Response of Three-layered Annular Plates for Different Ratios of Imperfection Cover

The Temperature Field Effect on Dynamic Stability Response of Three-layered Annular Plates for Different Ratios of Imperfection

By: Dorota Pawlus  
Open Access
|Apr 2023

References

  1. Chen, Y.R; Chen, L.W.; Wang, C.C. Axisymmetric dynamic instability of rotating polar orthotropic sandwich annular plates with a constrained damping layer. Composite Structures 2006, 73(2), 290–302. doi: 10.1016/j.compstruct.2005.01.039.
  2. Wang, H.J.; Chen, L.W. Axisymmetric dynamic stability of rotating sandwich circular plates. Journal of Vibration and Acoustics 2004, 126, 407–415.
  3. Ghiasian, S.E.; Bagheri, H.; Sadighi, M.; Eslami, M.R. Thermal buckling of shear deformable temperature dependent circular/annular FGM plates, International Journal of Mechanical Sciences 2014, 81, 137–148. http://dx.doi.org/10.1016/j.ijmecsci.2014.02.007.
  4. Kadam, P.A.; Panda, S. Nonlinear analysis of an imperfect radially graded annular plate with a heated edge. Int. J. Mech. Mater. Des. 2014, 10, 281–304. doi:10.1007/s10999-014-9249-y.
  5. Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermo-inertial buckling of annular plates, Acta Mech. 2017, 228, 1493–1509. doi:10.1007/s00707-016-1772-5. doi:10.1007/s00707-016-1772-5.
  6. Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermal buckling of annular plates on a partial elastic foundation, Journal of Thermal Stresses 2017, 228 40(8), 1015–1029.
  7. Bagheri, H.; Kiani, Y.; Eslami, M.R. Asymmetric thermal buckling of temperature dependent annular FGM plates on a partial elastic foundation, Computers and Mathematics with Applications 2018, 75, 1566–1581.
  8. Zhang, J.; Pan, S.; Chen, L. Dynamic thermal buckling and postbuckling of clamped-clamped imperfect functionally graded annular plates, Nonlinear Dyn. 2019, 95, 565–577.
  9. Shariyat, M.; Behzad, H.; Shaterzadeh, A.R. 3D thermomechanical buckling analysis of perforated annular sector plates with multiaxial material heterogeneities based on curved B-spline elements. Composite Structures 2018, 188, 89–103. https://doi.org/10.1016/j.compstruct.2017.12.065
  10. Alavi, S.H.; Eipakchi, H. Geometry and load effects on transient response of a VFGM annular plate: An analytical approach. Struct. Eng. Mech. 2019, 70(2), 179–197. doi:10.12989/sem.2019.70.2.179.
  11. Pawlus, D. Buckling sensitivity of three-layered annular plates in temperature field on the rate of imperfection. Proceedings of the 8th International Conference on Coupled Instabilities in Metal Structures, Lodz University of Technology, Poland, July 13–15, 2020, cims2020.p.lodz.pl
  12. Pawlus, D. Dynamic stability of three-layered annular plates with wavy forms of buckling. Acta Mech. 2011, 216, 123–138. doi: 10.1007/s00707-010-0352-3
  13. Pawlus, D. Solution to the problem of axisymmetric and asymmetric dynamic instability of three-layered annular plates. Thin-Walled Structures 2011, 49, 660–668. doi: 10.1016/j.tws.2010.09.013.
  14. Pawlus, D. Dynamic stability of three-layered annular plates with viscoelastic core, Scientific Bulletin of the Technical University of Lodz, 1075, Lodz, 2010 (in Polish).
  15. Pawlus, D. Dynamic response of three-layered annular plate with imperfections. Studia Geotechnica et Mechanica 2014, vol. XXXVI, no. 4, 2014, 13–25. doi: 10.2478/seg-2014-0032.
  16. Pawlus, D. Stability of three-layered annular plate in stationary temperature field, Thin-Walled Structures 2019, 144. https://doi.org/10.1016/j.tws.2019.106280.
  17. Pawlus, D. Dynamic response of three-layered annular plates in time-dependent temperature field, International Journal of Structural Stability and Dynamics 2020, Vol. 20, No. 12. doi: 10.1142/S0219455420501394.
  18. Pawlus, D. Dynamic stability of mechanical and thermal loaded three-layered annular plate with viscoelastic core, Vibrations in Physical Systems 2020, Vol. 31, No. 2. https://doi.org/10.21008/j.0860-6897.2020.2.23.
  19. Wolmir, A.S. Nonlinear dynamics of plates and shells. Science, Moscow 1972. (in Russian).
  20. Timoshenko, S.; Goodier, J.N. Theory of Elasticity, Warsaw, Arkady, 1962.
  21. Wojciech, S. Numerical solution of the problem of dynamic stability of annular plates. J. Theor. Appl. Mech. 1979, 17(2), 247–262. (in Polish).
  22. Hibbit, Karlsson & Sorensen, Inc.: ABAQUS/Standard. User's manual. 1998.
DOI: https://doi.org/10.2478/sgem-2023-0005 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 158 - 173
Submitted on: Sep 20, 2022
|
Accepted on: Jan 5, 2023
|
Published on: Apr 28, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Dorota Pawlus, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.