References
- ASTM. (2007). Standard Classification of Peat Samples by Laboratory Testing. American Society for Testing and Materials, ASTM International, West Conshohocken.
- Berry, P. L. (1983). Application of consolidation theory for peat to design of a reclamation scheme by preloading. Quarterly Journal of Engineering Geology and Hydrogeology, 16, 103–112. https://doi.org/10.1144/GSL.QJEG.1983.016.02.03
- Boylan, N., Jennings, P., Long, M. (2008). Peat failures in Ireland. Quarterly Journal of Engineering Geology and Hydrogeology, 41, 93–108. https://doi.org/10.1144/1470-9236/06-028
- Craig, R. F. (1992). Soil Mechanics, 5th ed. Chapman & Hall, London.
- EN 15935:2012. Sludge, treated biowaste, soil and waste – Determination of loss on ignition. CEN, Brussels.
- Farnham, R. S., Finney, H. R. (1965). Classification and properties of organic soils. Advances in Agronomy, 17, 115–162. https://doi.org/10.1016/S0065-2113(08)60413-7
- Head, K. H. (1994). Manual of Soil Laboratory Testing. Volume 2: Permeability, Shear Strength and Compressibility Tests, 2nd ed. John Wiley & Sons, Inc., New York.
- Heiri, O., Lotter, A. F., Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
- Hobbs, N. B. (1986). Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology, 19, 7–80. https://doi.org/10.1144/GSL.QJEG.1986.019.01.02
- Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., Groot, J. C. J., Tittonell, P. A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320–328. https://doi.org/10.1111/ejss.12224
- Hough, B. K. (1957). Basic Soils Engineering, 1st edn. The Ronald Press Company, New York.
- Huat, B. B. K. (2004). Organic and Peat Soils Engineering, 1st edn. University Putra Malaysia Press, Serdang.
- Huat, B. B. K., Asadi, A., Kazemian, S. (2009). Experimental Investigation on Geomechanical Properties of Tropical Organic Soils and Peat. American Journal of Engineering and Applied Sciences, 2, 184–188. https://doi.org/10.3844/ajeassp.2009.184.188
- Huat, B. B. K., Kazemian, S., Prasad, A., Barghchi, M. (2011a). A study of the compressibility behavior of peat stabilized by DMM: Lab Model and FE analysis. Scientific Research Essays, 6, 196–204.
- Huat, B. B. K., Kazemian, S., Prasad, A., Barghchi, M. (2011b) State of an art review of peat: General perspective. International Journal of Physical Sciences, 6, 1988–1996. https://doi.org/10.5897/IJPS11.192
- Huat, B. B. K., Prasad, A., Asadi, A., Kazemian, S. (2014). Geotechnics of Organic Soils and Peat. Taylor & Francis Group, London.
- ISO 17892-1:2014. Geotechnical investigation and testing – Laboratory testing of soil – Part 1: Determination of water content. ISO, Geneva.
- ISO 17892-2:2014. Geotechnical investigation and testing – Laboratory testing of soil – Part 2: Determination of bulk density. ISO, Geneva.
- ISO 17892-3:2015. Geotechnical investigation and testing – Laboratory testing of soil – Part 3: Determination of particle density. ISO, Geneva.
- ISO 17892-5:2017. Geotechnical investigation and testing – Laboratory testing of soil – Part 5: Incremental loading oedometer test. ISO, Geneva.
- Jiang, N., Wang, C., Wu, Q., Li, S. (2020). Influence of Structure and Liquid Limit on the Secondary Compressibility of Soft Soils. Journal of Marine Science and Engineering, 8, 1–26. https://doi.org/10.3390/jmse8090627
- Kazemian, S., Huat, B. B. K., Prasad, A., Barghchi, M. (2011). A state of art review of peat: Geotechnical engineering perspective. International Journal of Physical Sciences, 6, 1974–1981. https://doi.org/10.5897/IJPS11.396
- Landva, A. O., Pheeney, P. E. (1980). Peat fabric and structure. Canadian Geotechnical Journal, 17, 416–435.
- Larsson, R. (1996). Organic Soils. In: Harlten, J., Wolski, W. (ed). Embankments on Organic Soils. Elsevier Science B.V., Amsterdam.
- Lechowicz, Z., Fukue, M., Rabarijoely, S., Sulewska, M. J. (2018). Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks. Applied Sciences, 8, 1395–1411. https://doi.org/10.3390/app8081395
- Long, M. (2005). Review of peat strength, peat characterisation and constitutive modelling of peat with reference to landsides. Studia Geotechnica et Mechanica, 27, 67–90.
- Majtyka, T. (2013). Peat deposits in Poland. http://commons.wikimedia.org/wiki/File:PL_torf_złoża.png. Accessed 9 April 2022.
- Malawska, M., Ekonomiuk, A., Wiłkomirski, B. (2006). Chemical characteristics of some peatlands in southern Poland. Mires and Peat, 1, 1–14.
- Mesri, G. (1986). Discussion of ‘Postconstruction settlement of an expressway built on peat by precompression’. Canadian Geotechnical Journal, 23, 403–407.
- Mesri, G., Ajlouni, M. (2007). Engineering Properties of Fibrous Peats. Journal of Geotechnical and Geoenvironmental Engineering, 133, 850–866. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850)
- Mesri, G., Castro, A. (1987). The Cα/Cc concept and K0 during secondary compression. Journal of Geotechnical Engineering, 113, 230–247.
- Mesri, G., Godlewski, P. M. (1977). Time- and stress-compressibility interrelationship. Journal of Geotechnical Engineering, 103, 419–430.
- Mesri, G., Stark, T. D., Ajlouni, M. A., Chen, C. S. (1997). Secondary Compression of Peat with or without Surcharging. Journal of Geotechnical and Geoenvironmental Engineering, 123, 411–421. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(411)
- Moran, Proctor, Mueser, Rutledge, P. C. (1958). Study of Deep Soil Stabilization by Vertical Sand Drains. Bureau of Yards and Docks, Department of the Navy, New York.
- O’Kelly, B. C., Pichan, S. P. (2013). Effects of decomposition on the compressibility of fibrous peat – A review. Geomechanics and Geoengineering, 9, 286–296. https://doi.org/10.1080/17486025.2013.804210
- Rahgozar, M. A., Saberian, M. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires and Peat, 18, 1–12. https://doi.org/10.19189/MaP.2015.OMB.205
- Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., Van Cappellen, P. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84. https://doi,org/10.1016/j.chemgeo.2016.03.010
- Samson, L., La Rochelle, P. (1972). Design and performance of an expressway constructed over peat by preloading. Canadian Geotechnical Journal, 9, 447–466.
- Schulz, C., Meier-Uhlherr, R., Luthardt, V., Joosten, H. (2019). A toolkit for field identification and ecohydrological interpretation of peatland deposits in Germany. Mires and Peat, 24, 1–20. https://doi.org/10.19189/MaP.2019.OMB.StA.1817
- Shotyk, W. (1988). Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews, 25, 95–176. https://doi.org/10.1016/0012-8252(88)90067-0
- Shotyk, W. (1992). Organic soils. In: Martini, I. P., Chesworth, W. (ed). Weathering, Soils, and Paleosols. Developments in Earth Surface Processes. Elsevier, Amsterdam.
- Skreczko, S., Szymczyk, A., Nadłonek, W. (2021). Impacts of vegetation and palaeohydrological changes on the n-alkane composition of a Holocene peat sequence from the Upper Vistula Valley (southern Poland). Journal of Soil Sediments, 21, 2709–2718. https://doi.org/10.1007/s11368-021-02981-4
- Szajdak, L. W., Jezierski, A., Wegner, K., Meysner, T., Szczepański, M. (2020). Influence of Drainage on Peat Organic Matter: Implications for Development, Stability, and Transformation. Molecules, 25, 2587–2614. https://doi.org/10.3390/molecules25112587
- United States Department of Agriculture (USDA). (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed. United States Government Printing Office, Washington.
- Wong, L. S., Hashim, R., Ali, F. H. (2008). Strength and Permeability of Stabilized Peat Soil. Journal of Applied Sciences, 8, 1–5. https://doi.org/10.3923/jas.2008.3986.3990
- Wong, L. S., Hashim, R., Ali, F. H. (2009). A Review on Hydraulic Conductivity and Compressibility of Peat. Journal of Applied Sciences, 9, 3207–3218. https://doi.org/0.3923/jas.2009.3207.3218
- Zaccone, C., Lobianco, D., Shotyk, W., Ciavatta, C., Appleby, P. G., Brugiapaglia, E., Casella, L., Miano, T. M., D’Orazio, V. (2017). Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep43040
- Zaccone, C., Miano, T. M., Shotyk, W. (2007). Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry, 38, 151–160. https://doi.org/10.1016/j.orggeochem.2006.06.023
- Zaccone, C., Plaza, C., Ciavatta, C., Miano, T. M., Shotyk, W. (2018). Advances in the determination of humification degree in peat since Achard (1786): Applications in geochemical and paleoenvironmental studies. Earth-Science Reviews, 185, 163–178. https://doi.org/10.1016/j.earscirev.2018.05.017