Have a personal or library account? Click to login
Effect of fibre content on the geotechnical properties of peat Cover

Effect of fibre content on the geotechnical properties of peat

Open Access
|Mar 2023

References

  1. ASTM. (2007). Standard Classification of Peat Samples by Laboratory Testing. American Society for Testing and Materials, ASTM International, West Conshohocken.
  2. Berry, P. L. (1983). Application of consolidation theory for peat to design of a reclamation scheme by preloading. Quarterly Journal of Engineering Geology and Hydrogeology, 16, 103–112. https://doi.org/10.1144/GSL.QJEG.1983.016.02.03
  3. Boylan, N., Jennings, P., Long, M. (2008). Peat failures in Ireland. Quarterly Journal of Engineering Geology and Hydrogeology, 41, 93–108. https://doi.org/10.1144/1470-9236/06-028
  4. Craig, R. F. (1992). Soil Mechanics, 5th ed. Chapman & Hall, London.
  5. EN 15935:2012. Sludge, treated biowaste, soil and waste – Determination of loss on ignition. CEN, Brussels.
  6. Farnham, R. S., Finney, H. R. (1965). Classification and properties of organic soils. Advances in Agronomy, 17, 115–162. https://doi.org/10.1016/S0065-2113(08)60413-7
  7. Head, K. H. (1994). Manual of Soil Laboratory Testing. Volume 2: Permeability, Shear Strength and Compressibility Tests, 2nd ed. John Wiley & Sons, Inc., New York.
  8. Heiri, O., Lotter, A. F., Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.
  9. Hobbs, N. B. (1986). Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology, 19, 7–80. https://doi.org/10.1144/GSL.QJEG.1986.019.01.02
  10. Hoogsteen, M. J. J., Lantinga, E. A., Bakker, E. J., Groot, J. C. J., Tittonell, P. A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320–328. https://doi.org/10.1111/ejss.12224
  11. Hough, B. K. (1957). Basic Soils Engineering, 1st edn. The Ronald Press Company, New York.
  12. Huat, B. B. K. (2004). Organic and Peat Soils Engineering, 1st edn. University Putra Malaysia Press, Serdang.
  13. Huat, B. B. K., Asadi, A., Kazemian, S. (2009). Experimental Investigation on Geomechanical Properties of Tropical Organic Soils and Peat. American Journal of Engineering and Applied Sciences, 2, 184–188. https://doi.org/10.3844/ajeassp.2009.184.188
  14. Huat, B. B. K., Kazemian, S., Prasad, A., Barghchi, M. (2011a). A study of the compressibility behavior of peat stabilized by DMM: Lab Model and FE analysis. Scientific Research Essays, 6, 196–204.
  15. Huat, B. B. K., Kazemian, S., Prasad, A., Barghchi, M. (2011b) State of an art review of peat: General perspective. International Journal of Physical Sciences, 6, 1988–1996. https://doi.org/10.5897/IJPS11.192
  16. Huat, B. B. K., Prasad, A., Asadi, A., Kazemian, S. (2014). Geotechnics of Organic Soils and Peat. Taylor & Francis Group, London.
  17. ISO 17892-1:2014. Geotechnical investigation and testing – Laboratory testing of soil – Part 1: Determination of water content. ISO, Geneva.
  18. ISO 17892-2:2014. Geotechnical investigation and testing – Laboratory testing of soil – Part 2: Determination of bulk density. ISO, Geneva.
  19. ISO 17892-3:2015. Geotechnical investigation and testing – Laboratory testing of soil – Part 3: Determination of particle density. ISO, Geneva.
  20. ISO 17892-5:2017. Geotechnical investigation and testing – Laboratory testing of soil – Part 5: Incremental loading oedometer test. ISO, Geneva.
  21. Jiang, N., Wang, C., Wu, Q., Li, S. (2020). Influence of Structure and Liquid Limit on the Secondary Compressibility of Soft Soils. Journal of Marine Science and Engineering, 8, 1–26. https://doi.org/10.3390/jmse8090627
  22. Kazemian, S., Huat, B. B. K., Prasad, A., Barghchi, M. (2011). A state of art review of peat: Geotechnical engineering perspective. International Journal of Physical Sciences, 6, 1974–1981. https://doi.org/10.5897/IJPS11.396
  23. Landva, A. O., Pheeney, P. E. (1980). Peat fabric and structure. Canadian Geotechnical Journal, 17, 416–435.
  24. Larsson, R. (1996). Organic Soils. In: Harlten, J., Wolski, W. (ed). Embankments on Organic Soils. Elsevier Science B.V., Amsterdam.
  25. Lechowicz, Z., Fukue, M., Rabarijoely, S., Sulewska, M. J. (2018). Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks. Applied Sciences, 8, 1395–1411. https://doi.org/10.3390/app8081395
  26. Long, M. (2005). Review of peat strength, peat characterisation and constitutive modelling of peat with reference to landsides. Studia Geotechnica et Mechanica, 27, 67–90.
  27. Majtyka, T. (2013). Peat deposits in Poland. http://commons.wikimedia.org/wiki/File:PL_torf_złoża.png. Accessed 9 April 2022.
  28. Malawska, M., Ekonomiuk, A., Wiłkomirski, B. (2006). Chemical characteristics of some peatlands in southern Poland. Mires and Peat, 1, 1–14.
  29. Mesri, G. (1986). Discussion of ‘Postconstruction settlement of an expressway built on peat by precompression’. Canadian Geotechnical Journal, 23, 403–407.
  30. Mesri, G., Ajlouni, M. (2007). Engineering Properties of Fibrous Peats. Journal of Geotechnical and Geoenvironmental Engineering, 133, 850–866. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(850)
  31. Mesri, G., Castro, A. (1987). The Cα/Cc concept and K0 during secondary compression. Journal of Geotechnical Engineering, 113, 230–247.
  32. Mesri, G., Godlewski, P. M. (1977). Time- and stress-compressibility interrelationship. Journal of Geotechnical Engineering, 103, 419–430.
  33. Mesri, G., Stark, T. D., Ajlouni, M. A., Chen, C. S. (1997). Secondary Compression of Peat with or without Surcharging. Journal of Geotechnical and Geoenvironmental Engineering, 123, 411–421. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(411)
  34. Moran, Proctor, Mueser, Rutledge, P. C. (1958). Study of Deep Soil Stabilization by Vertical Sand Drains. Bureau of Yards and Docks, Department of the Navy, New York.
  35. O’Kelly, B. C., Pichan, S. P. (2013). Effects of decomposition on the compressibility of fibrous peat – A review. Geomechanics and Geoengineering, 9, 286–296. https://doi.org/10.1080/17486025.2013.804210
  36. Rahgozar, M. A., Saberian, M. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires and Peat, 18, 1–12. https://doi.org/10.19189/MaP.2015.OMB.205
  37. Rezanezhad, F., Price, J. S., Quinton, W. L., Lennartz, B., Milojevic, T., Van Cappellen, P. (2016). Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology, 429, 75–84. https://doi,org/10.1016/j.chemgeo.2016.03.010
  38. Samson, L., La Rochelle, P. (1972). Design and performance of an expressway constructed over peat by preloading. Canadian Geotechnical Journal, 9, 447–466.
  39. Schulz, C., Meier-Uhlherr, R., Luthardt, V., Joosten, H. (2019). A toolkit for field identification and ecohydrological interpretation of peatland deposits in Germany. Mires and Peat, 24, 1–20. https://doi.org/10.19189/MaP.2019.OMB.StA.1817
  40. Shotyk, W. (1988). Review of the inorganic geochemistry of peats and peatland waters. Earth-Science Reviews, 25, 95–176. https://doi.org/10.1016/0012-8252(88)90067-0
  41. Shotyk, W. (1992). Organic soils. In: Martini, I. P., Chesworth, W. (ed). Weathering, Soils, and Paleosols. Developments in Earth Surface Processes. Elsevier, Amsterdam.
  42. Skreczko, S., Szymczyk, A., Nadłonek, W. (2021). Impacts of vegetation and palaeohydrological changes on the n-alkane composition of a Holocene peat sequence from the Upper Vistula Valley (southern Poland). Journal of Soil Sediments, 21, 2709–2718. https://doi.org/10.1007/s11368-021-02981-4
  43. Szajdak, L. W., Jezierski, A., Wegner, K., Meysner, T., Szczepański, M. (2020). Influence of Drainage on Peat Organic Matter: Implications for Development, Stability, and Transformation. Molecules, 25, 2587–2614. https://doi.org/10.3390/molecules25112587
  44. United States Department of Agriculture (USDA). (1999). Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed. United States Government Printing Office, Washington.
  45. Wong, L. S., Hashim, R., Ali, F. H. (2008). Strength and Permeability of Stabilized Peat Soil. Journal of Applied Sciences, 8, 1–5. https://doi.org/10.3923/jas.2008.3986.3990
  46. Wong, L. S., Hashim, R., Ali, F. H. (2009). A Review on Hydraulic Conductivity and Compressibility of Peat. Journal of Applied Sciences, 9, 3207–3218. https://doi.org/0.3923/jas.2009.3207.3218
  47. Zaccone, C., Lobianco, D., Shotyk, W., Ciavatta, C., Appleby, P. G., Brugiapaglia, E., Casella, L., Miano, T. M., D’Orazio, V. (2017). Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Scientific Reports, 7, 1–10. https://doi.org/10.1038/srep43040
  48. Zaccone, C., Miano, T. M., Shotyk, W. (2007). Qualitative comparison between raw peat and related humic acids in an ombrotrophic bog profile. Organic Geochemistry, 38, 151–160. https://doi.org/10.1016/j.orggeochem.2006.06.023
  49. Zaccone, C., Plaza, C., Ciavatta, C., Miano, T. M., Shotyk, W. (2018). Advances in the determination of humification degree in peat since Achard (1786): Applications in geochemical and paleoenvironmental studies. Earth-Science Reviews, 185, 163–178. https://doi.org/10.1016/j.earscirev.2018.05.017
DOI: https://doi.org/10.2478/sgem-2023-0003 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 133 - 143
Submitted on: May 9, 2022
|
Accepted on: Dec 6, 2022
|
Published on: Mar 9, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Iwona Chmielewska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.