References
- Sluis, J.; Besseling F.; Stuurwold P.H.H.; Modelling of a pile row in a 2D plane strain FE-analysis. Num. Method. Geotech. Eng. 2014, 978-1-138-00146-6.
- Brown, D.A.; Morrison, C.; Reese, L.C. Lateral Load Behavior of Pile Group in Sand. J. Geotech. Eng. Am. Soc. Civil Eng. 1988, Volume 114, pp. 1261–1276.
- Hemel M.J.; Korff Mandy.; Peters D.J.; Analytical model for laterally loaded pile groups in layered sloping soil. Marine. Struc. 2022, 84, 103229.
- Cao, G.; Ding, X.; Yin, Z.; Zhou, H.; Zhou, P. A New Soil Reaction Model for Large-Diameter Monopiles in Clay. Comput. Geotech. 2021, 137, 104311. https://doi.org/10.1016/j.compgeo.2021.104311.
- API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2014.
- Wang, H.; Wang, L. Z.; Hong, Y.; He, B.; Zhu, R. H. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. App. Ocean. Res. 2020, 101, 102196.
- Isenhower, W. M.; Shin-Tower, W.; Gonzalo, V. L. (2016). Technical Manual for LPile 2016 (Using Data Format Version 9). Ensoft, Inc.
- Reese, L. C. Behavior of Piles and Pile Groups Under Lateral Load. Federal Highway Administration Office of Engineering & Highway Operations Research and Development: Washington D.C, US, 1986.
- API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2011.
- Liang, F.; Chen, H.; Jia, Y. Quasi-static p-y hysteresis loop for cyclic lateral response of pile foundations in offshore platforms. Ocean. Eng., 2018, 148, 62–74.
- Hyunsung L.; Sangseom J. Simplified p-y curves under dynamic loading in dry sand. Soil. Dyn. Earth. Eng. 2018, 113, 101–111.
- Hammam, A.H.; Eliwa, M. Comparison Between Results of Dynamic & Static Moduli of Soil Determined by Different Methods. HBRC J. 2013, 9, 144–149.
- Maheswari, R.U.; Boominathan, A.; Dodagoudar, G.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech. Geo. Eng. 2010, 28, 119–137.
- Tsiambaos, G.; Sabatakakis, N. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece. Bull. Eng. Geo. Env. 2011, 70, 291–297.
- Badan Standardisasi Nasional. Perencanaan Ketahanan Gempa Untuk Gedung dan Non Gedung [SNI 1726:2019] [Earthquake Resistance Planning for Buildings and Non-Buildings [SNI 1726:2019]]. Badan Standardisasi Nasional: Jakarta, Indonesia, 2019.
- Das, B.M. Principles of Foundation Engineering, 7th ed. Thomson: Toronto, 2011.
- Poulos, H.G.; Davis, E.H. Pile Foundation Analysis and Design; Wiley: New York, USA, 1980. Available online: https://trid.trb.org/view/164430 (accessed on 24 May 2022).
- Li, Z.; Kotronis, P.; Escoffier, S. Numerical Study of the 3D Failure Envelope of a Single Pile in Sand. Com. Geotech. 2014, 62, 11–26.
- Sluis, J. Validation and Application of the Embedded Pile Row Feature in PLAXIS 2D. Plaxis Bulletin: Autumn issue. 2013.
- FHWA-HIF-18-031. (2018). Geoetchnical Engineering Circular: Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Trannsportation Facilities. U.S. Department of Transportation; Federal Highway Administration.
- Yu, X.; Abu-Farsakh, M. Y.; Yoon, S.; Tsai, C.; Zhang, Z. Implementation of LRFD of drilled shafts in Louisiana. J. Infra. System. 2012, 18(2), 103–112.
- Tjie-Liong, G. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. App. Eng. Res. 2014, 9, 8291–8311.
- Zhang, Y.; Andersen, K. H.; & Tedesco, G. Ultimate bearing capacity of laterally loaded piles in clay–Some practical considerations. Marine. Struc. 2016, 50, 260–275.
- Zhou, P.; Zhou, H.; Liu, H.; Li, X.; Ding, X.; Wang, Z. Analysis of lateral response of Existing Single Pile Caused by Penetration of Adjacent Pile in Undrained Clay. Comput. Geotech. 2020, 126, 103736.
- Zhu, B.; Wen, K.; Kong, D.; Zhu, Z.; Wang, L. A Numerical Study on the Lateral Loading Behaviour of Offshore Tetrapod Piled Jacket Foundations in Clay. App. Ocean. Res. 2018, 75, 165–177.
- Youngho, K.; Sangseom J. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach. Comput. and Goetech. 2011, 38, 248–257.
- Wang, H.; Wang, L.; Hong, Y.; Mašín, D.; Li, W.; He, B.; Pan, H. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand. Ocean. Eng. 2021, 226, 108299.
- Zhang H.; Liu R.;, Yuan Y. Influence of spudcan-pile interaction on laterally loaded piles. Ocean. Eng. 2019, 184, 32–39.