Have a personal or library account? Click to login
Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load Cover

Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load

Open Access
|Jan 2023

References

  1. Sluis, J.; Besseling F.; Stuurwold P.H.H.; Modelling of a pile row in a 2D plane strain FE-analysis. Num. Method. Geotech. Eng. 2014, 978-1-138-00146-6.
  2. Brown, D.A.; Morrison, C.; Reese, L.C. Lateral Load Behavior of Pile Group in Sand. J. Geotech. Eng. Am. Soc. Civil Eng. 1988, Volume 114, pp. 1261–1276.
  3. Hemel M.J.; Korff Mandy.; Peters D.J.; Analytical model for laterally loaded pile groups in layered sloping soil. Marine. Struc. 2022, 84, 103229.
  4. Cao, G.; Ding, X.; Yin, Z.; Zhou, H.; Zhou, P. A New Soil Reaction Model for Large-Diameter Monopiles in Clay. Comput. Geotech. 2021, 137, 104311. https://doi.org/10.1016/j.compgeo.2021.104311.
  5. API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2014.
  6. Wang, H.; Wang, L. Z.; Hong, Y.; He, B.; Zhu, R. H. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. App. Ocean. Res. 2020, 101, 102196.
  7. Isenhower, W. M.; Shin-Tower, W.; Gonzalo, V. L. (2016). Technical Manual for LPile 2016 (Using Data Format Version 9). Ensoft, Inc.
  8. Reese, L. C. Behavior of Piles and Pile Groups Under Lateral Load. Federal Highway Administration Office of Engineering & Highway Operations Research and Development: Washington D.C, US, 1986.
  9. API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2011.
  10. Liang, F.; Chen, H.; Jia, Y. Quasi-static p-y hysteresis loop for cyclic lateral response of pile foundations in offshore platforms. Ocean. Eng., 2018, 148, 62–74.
  11. Hyunsung L.; Sangseom J. Simplified p-y curves under dynamic loading in dry sand. Soil. Dyn. Earth. Eng. 2018, 113, 101–111.
  12. Hammam, A.H.; Eliwa, M. Comparison Between Results of Dynamic & Static Moduli of Soil Determined by Different Methods. HBRC J. 2013, 9, 144–149.
  13. Maheswari, R.U.; Boominathan, A.; Dodagoudar, G.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech. Geo. Eng. 2010, 28, 119–137.
  14. Tsiambaos, G.; Sabatakakis, N. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece. Bull. Eng. Geo. Env. 2011, 70, 291–297.
  15. Badan Standardisasi Nasional. Perencanaan Ketahanan Gempa Untuk Gedung dan Non Gedung [SNI 1726:2019] [Earthquake Resistance Planning for Buildings and Non-Buildings [SNI 1726:2019]]. Badan Standardisasi Nasional: Jakarta, Indonesia, 2019.
  16. Das, B.M. Principles of Foundation Engineering, 7th ed. Thomson: Toronto, 2011.
  17. Poulos, H.G.; Davis, E.H. Pile Foundation Analysis and Design; Wiley: New York, USA, 1980. Available online: https://trid.trb.org/view/164430 (accessed on 24 May 2022).
  18. Li, Z.; Kotronis, P.; Escoffier, S. Numerical Study of the 3D Failure Envelope of a Single Pile in Sand. Com. Geotech. 2014, 62, 11–26.
  19. Sluis, J. Validation and Application of the Embedded Pile Row Feature in PLAXIS 2D. Plaxis Bulletin: Autumn issue. 2013.
  20. FHWA-HIF-18-031. (2018). Geoetchnical Engineering Circular: Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Trannsportation Facilities. U.S. Department of Transportation; Federal Highway Administration.
  21. Yu, X.; Abu-Farsakh, M. Y.; Yoon, S.; Tsai, C.; Zhang, Z. Implementation of LRFD of drilled shafts in Louisiana. J. Infra. System. 2012, 18(2), 103–112.
  22. Tjie-Liong, G. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. App. Eng. Res. 2014, 9, 8291–8311.
  23. Zhang, Y.; Andersen, K. H.; & Tedesco, G. Ultimate bearing capacity of laterally loaded piles in clay–Some practical considerations. Marine. Struc. 2016, 50, 260–275.
  24. Zhou, P.; Zhou, H.; Liu, H.; Li, X.; Ding, X.; Wang, Z. Analysis of lateral response of Existing Single Pile Caused by Penetration of Adjacent Pile in Undrained Clay. Comput. Geotech. 2020, 126, 103736.
  25. Zhu, B.; Wen, K.; Kong, D.; Zhu, Z.; Wang, L. A Numerical Study on the Lateral Loading Behaviour of Offshore Tetrapod Piled Jacket Foundations in Clay. App. Ocean. Res. 2018, 75, 165–177.
  26. Youngho, K.; Sangseom J. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach. Comput. and Goetech. 2011, 38, 248–257.
  27. Wang, H.; Wang, L.; Hong, Y.; Mašín, D.; Li, W.; He, B.; Pan, H. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand. Ocean. Eng. 2021, 226, 108299.
  28. Zhang H.; Liu R.;, Yuan Y. Influence of spudcan-pile interaction on laterally loaded piles. Ocean. Eng. 2019, 184, 32–39.
DOI: https://doi.org/10.2478/sgem-2022-0027 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 28 - 40
Submitted on: Apr 28, 2022
Accepted on: Oct 23, 2022
Published on: Jan 25, 2023
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Queen Arista Rosmania Putri Sumarsono, As’ad Munawir, Harimurti, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.