References
- Komine, H. and Ogata, N. (1999). Experimental study on swelling characteristics of sand-bentonite mixture for nuclear waste disposal, Soils and found. 39(2), pp. 83–97. DOI:10.3208/sandf.39.2_83
- Novais-Ferreira, H. (1971). The clay content and the shear strength in sand-clay mixtures. Proceeding of 5th African Regional Conference of Soil Mechanic. Found. Eng. Luanda, August.
- Skempton, A.W. (1985). Residual strength of clays in landslides, folded strata and the laboratory, Géotechnique, 35(1), pp. 3–18; DOI: 10.1680/geot.1985.35.1.3
- Muir Wood, D. and Kumar, G. V. (2000). Experimental observations of behaviour of heterogeneous soils, Mec. Cohesive-Frictional Mater., 5(5), pp.373–398. DOI:10.1002/1099-1484(200007)5:5
- Vallejo, L. E. and Mawby, R. (2000). Porosity influence on the shear strength of granular material-clay mixtures, Eng. Geol., 58(2), pp. 125–136. DOI:10.1016/S0013-7952(00)00051-X.
- Prakasha, K. S. and Chandrasekaran, V. S. (2005). Behaviour of marine sand-clay mixtures under static and cyclic triaxial shear, J. Geotech. Geoenviron. 131(2), pp. 213–222. DOI:10.1061/(ASCE)1090-0241(2005)131:2(213)
- Monkul, M.M. and Ozden, G. (2007). Compressional behavior of clayey sand and transition 20 fines content, Eng. Geol., 89(3–4), pp. 195–205, https://doi.org/10.1016/j.enggeo2006.10.001.
- Shafiee, J., Tavakoli, H.R. and Jafari, M.K. (2008). Undrained behaviour of compacted sand-clay mixtures under monotonic loading paths, J. Appl. Sci., 8(18), pp. 3108–3118.
- Pakbaz, M. S. and Moqaddam A.S. (2012). Effect of sand gradation on the behaviour of sand-slay mixtures, Int. J. GEOMATE. 3(1) (Sl. No. 5), pp. 325–331. DOI: 10.21660/2012.5.3d.
- Cabalar, A.F., Hasan, R.A. (2013). Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids, Eng. Geol., 164, pp. 36–49, https://doi.org/10.1016/j.enggeo.2013.06.011.
- Cabalar, A.F., Mustafa, W.S. (2015). Fall cone tests on clay–sand mixtures, Eng. Geol., 192, pp.154–165, https://doi.org/10.1016/j.enggeo.2015.04.009.
- Elkady, T.Y., Shaker, A.A. and Dhowain, A.W., (2015). Shear strengths and volume changes of sand–attapulgite clay mixtures, Bull. Eng. Geol. Environ. 74, pp. 595–609.
- Mun, W., Balci, M.C., Valente, F. and McCartney, JS. (2018). Shearing and compression behavior of compacted sand-clay mixtures. Proceeding of the 7th International Conference on Unsaturated Soils UNSAT 2018, Hong Kong university.
- Sun, D., Sun, W., Yan, W. and Li, J. (2010). Hydro-mechanical behaviours of highly compacted sand-bentonite mixture, J. Rock Mech. Geotech. Eng., 2(1), pp. 79–85. DOI:10.3724/SP.J.1235.2010.00079.
- Anuchit, U. (2014). Effect of suction on unconfined compressive strength of clayey soils with different sand contents, ARPN, J. Eng. Appl. Sc., 9(6), pp. 881–884. http://www.arpnjournals.com/jeas/volume_06_2014.htm.
- Khan, F. S., Azam, S., Raghunandan, M.E. and Clark, R. (2014). Compressive Strength of Compacted Clay-Sand Mixes, Adv. Mater. Sci. Eng., Volume 2014, Article ID 921815, 6 pages. DOI:10.1155/2014/921815.
- Serbah, B., Abou-Bekr, N., Bouchemella, S., Eid, J. and Taibi, S. (2018). Dredged sediments valorisation in CEBs: Suction and water content effect on their 1 mechanical properties, Constr. Build. Mater., 158, pp. 503–515. DOI:10.1016/j.conbuildmat.2017.10.043.
- Cabalar A.F., Khalaf, M.M. and Karabash, Z. (2018). Shear modulus of clay-sand mixtures using bender element test, Acta Geotech. Slov., (1), pp. 3–15. DOI:10.18690/actageotechslov.15.1.3-15.2018.
- Kenney, T.C., Van Veen, W.A., Swallow, M.A., and Sungaila, M.A. (1992). Hydraulic conductivity of compacted bentonite sand mixtures, Can. Geotech. J. 29(3), 364–374. DOI:10.1139/t92-042.
- Howell, J.L., Shackeford, C.D., Amer, N.H. and Stern, R.T. (1997). Compaction of sand-10 processed clay soil mixtures, Geotech. Test. J., 20(4), pp. 443–458. DOI: 10.1520/GTJ10411J.
- Colmenares Montanes, J.E. (2002). suction and volume changes of compacted sand-bentonite mixtures, PH.D Thesis., university of London, U.K
- Cabalar, A.F., Mustafa, W.S. (2017). Behaviour of sand–clay mixtures for road pavement subgrade, Int. J. Pavement Eng., 18(8), 714–726. DOI: 10.1080/10298436.2015.1121782
- Sivapullaiah P., Sridharan, A. and Stalin, V.k. (2000). Hydraulic Conductivity of Bentonite Sand Mixtures, Can. Geotech. J., 37(2), pp. 406–413, DOI:10.1139/T99-120.
- Fuentes, W.M., Hurtado, C. and Lascarro, C. (2018). On the influence of the spatial distribution of fine content in the hydraulic conductivity of sand-clay mixtures, Earth Sci. Res. J., 22(4), pp. 239–249, DOI:10.15446/esrj.v22n4.69332.
- Taibi, S. (1994). Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative – Etude expérimentale et modélisation, Ph.D. Thesis, Ecole centrale, Paris, France.
- Fleureau, J.-M., Verbrugge, J.-C., Huergo, P.J, Correia, A.-G. and Kheirbek-Saoud, S. (2002). Aspects of the behaviour of compacted clayey soils on drying and wetting paths, Can. Geotech. J. 39(6), pp. 1341–1357. DOI:10.1139/t02-100.
- Hattab, M. and Fleureau, J.M. (2010). Experimental study of kaolin particle orientation mechanism, Géotechnique 60(5), pp. 323–331. DOI:10.1680/geot.2010.60.5.323.
- Wei X., Hattab M., Fleureau, J.M. and Ruilin, H. (2013). Micro–macro experimental study of two clayey materials on drying paths, Bull. Eng. Geol. Environ. 72(3–4), pp. 495–508. DOI:10.1007/s10064-013-0513-4.
- Ighil Ameur, L., Robin, R. and Hattab, M. (2016). Elastic properties in a clayey material under mechanical loading - an estimation through ultrasonic propagations, Eur. J. Environ. Civ. Eng., 20 (9), pp. 1127–1146. DOI:10.1080/19648189.2015.1090926.
- NF EN ISO 17892-4 (2018), Geotechnical investigation and testing - Laboratory testing of soil - Part 4: Determination of particle size distribution. French standard, AFNOR Editions. France.
- NF EN ISO 17892-12 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 12: determination of liquid and plastic limits. French standard, AFNOR Editions. France.
- Tan, T.S., Goh, T.C., Karunaratne, G.P., Lee, S.L., (1994). Shear strength of very soft clay–sand mixtures. Geotech. Test. J., 17(1), pp.27–34.
- Kheirbek-Saoud, S. (1994). Comportement mécanique de la couche de fondation d’une voie ferrée. Ph.D. Thesis, Ecole centrale de Paris, Paris, France.
- NF P94-093 (2014). Soils: investigation and testing - Determination of the compaction reference values of a soil type - Standard proctor test - Modified Proctor test, French standard, AFNOR Editions. France.
- Azam, S. and Chowdhury, R. H. (2013). Swell-shrink-consolidation behaviour of compacted expansive clays, Int. J. Geot. Eng., 7(4), pp. 424–430.
- Marinho, F. A. M. and Oliveira, O. M. (2012). Unconfined shear strength of compacted unsaturated plastic soils, Proceedings of the Institution of Civil Engineers: Geot. Eng., 165(2), pp. 97–106.
- NF EN ISO 17892-7 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 7: unconfined compression test, French standard, AFNOR Editions. France.
- NF EN ISO 17892-9 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 9: consolidated triaxial compression tests on water saturated soils, French standard, AFNOR Editions. France.
- Taibi, S., Duperret, A. and Fleureau, J.-M. (2009). The effect of suction on the hydro mechanical behaviour of chalk rocks, Eng. Geol., 106, pp.40–50.
- Biarez, J., Fleureau, J.M., Zerhouni, M.I and Soepandji, B.S. (1988). Variations de volume des sols argileux lors de cycles de drainage-humidification. Revue Française de Géotechnique, 41, pp. 63–71.
- Fleureau, J.M., Kheirbek-Saoud, S., Soemitro, R. and Taibi, S. (1993). Behavior of clayey soil on drying-wetting paths. Can. Geotech. J., 3(2), 287–296. https://doi.org/10.1139/t93-024.
- Zur, B. (1966). Osmotic control the matrix soil water potential, Soil Sci., pp. 394–398.
- Williams, J. and Shaykewich, C.F. (1969). An evaluation of polyethylene glycol (P.E.G.) 6000 and P.E.G. 20000 in the osmotic control of soil water matrix potential, Can. J. Soil Science, 102, pp. 394–398.
- Indarto (1991). Comportement mécanique et compactage des matériaux de barrages. Ph.D. Thesis, Ecole centrale de Paris, Paris, France.
- Delage, P. and Suraj, D. (1992). Suction controlled testing of non-saturated soils with osmotic consolidometer. 7th international conference expansive soils, Dallas, pp. 206–211.
- Delage, P., Howat, M.D. and Cui, Y.J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay, Eng. Geol., 1(1), pp. 31–48. DOI: 10.1016/S0013-7952(97)00083-5
- Bouchemella, S. and Alimi-Ichola, I. (2016). Détermination de la variation spatio-temporelle de la teneur en eau lors d’une infiltration verticale en utilisant la méthode TDR, Annales du Bâtiment et des Travaux Publics. 68 (5–6). Numéro spécial : 34es Rencontres universitaires de Génie Civil, Liège, 24–27 mai 2016. ISBN 978-2-7472-2690-5 (ISSN 1270-9840).
- ASTM D5298-16 (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper, ASTM International, West Conshohocken, PA., USA. DOI: 10.1520/D5298-16.
- Muhwezi, L. and Achanit, S. E. (2019). Effect of Sand on the Properties of Compressed Soil-Cement Stabilized Blocks. Colloid and Surface Science. 4(1), pp.1–6. DOI: 10.11648/j.css.20190401.11
- Mullins, C.E. and Panayiotopoulos, K.P. (1984). The strength of unsaturated mixtures of sand and kaolin and the concept of effective stress, J. Soil Sci., 35(3), pp. 459–468.