Have a personal or library account? Click to login
Observation Method in the Control of Stacker Capacity Under Landslide Hazard – A Case Study Cover

Observation Method in the Control of Stacker Capacity Under Landslide Hazard – A Case Study

By: Miłosz Bąk and  Irena Bagińska  
Open Access
|Jul 2022

References

  1. Abellan, A., Jaboyedoff, M., Oppikofer, T. & Vilaplana, J. (2009). Detection of millimetric deformation using a terrestrial laser scanner: experiment and application to a rockfall event. Natural Hazards and Earth System Sciences, 9, 365–372. https://doi.org/10.5194/nhess-9-365-2009
  2. Alekseev A., Shilova L., Mefedov E. 2021. An approach for automatization of geotechnical monitoring in cryolithzone. IOP Conf. Series: Materials Science and Engineering. 1083 012080.
  3. Barla, G., Antolini, F., Bara, M., Mensi, E. & Piovano, G. (2010). Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Engineering Geology, 116, 218–235. https://doi.org/10.1016/j.enggeo.2010.09.004
  4. Bednarczyk, Z. (2012). Landslide survey and monitoring methods. Górnictwo Odkrywkowe. (in Polish)
  5. Bednarczyk, Z. (2015). Landslide monitoring and on-line early warning methods based on geological engineering investigations in the Beskid Niski and Beskid Średni Mountains. Przegląd Geologiczny, 63(10/3), 1220–1229. (in Polish)
  6. Bednarczyk, Z. (2019). Landslide hazards in Polish opencast lignite mines, examples of prevention and possibilities of using remote monitoring to mitigate the risk, Biuletyn Państwowego Instytutu Geologicznego, 477, 1–20. (in Polish)
  7. Bergamo, P., Dashwood, B., Uhlemann, S., Swift, R., Chambers, J., Gunn, D. & Donohue, S. (2016). Time-lapse monitoring of climate effects on earthworks using Surface waves. Geophysics, 81(2), 1–15. https://doi.org/10.1190/geo2015-0275.1
  8. Bonazzo, F., Esposito, C., Fantini, A., Fiorucci, M., Martino, S., Mazzanti, P., Prestininzi, A., Rivellino, S., Rocca, A. & Scarascia Mugozza, G. (2017). Multisensor Landslide Monitoring as a Challenge For Early Warning: From Process Based to Statistic Based Approaches. Conference: Workshop on World Landslide Forum, 33–39. https://doi.org/10.1007/978-3-319-53487-9_3
  9. Borecka, A., Stopkowicz A. & Sekuła, K. (2017). The observational method and the geotechnical monitoring in law to assess subsoil and construction conditions. Przegląd Geologiczny, 65(10/2), 685–691. (in Polish)
  10. Burland, J., Jamiolkowski, M. & Viggiani, C. (2009). Leaning Tower of Pisa: Behaviour after Stabilisation Operations. International Journal of Geoengineering Case Histories, Vol. 1, Issue 3, 156–169.
  11. Carla, T., Farina, P., Intrieri, E., Botsialas, K., Casagli, N. 2017. On the monitoring and early warning of brittle slope failures in hard rock masses: Examples from and open-pit mine. Engineering Geology, 228, 71–81.
  12. Carla, T., Intrieri, E., Farina, P., Casagli N., (2017). A new method to identify impending failure in rock slopes. International Journal of Rock Mechanics and Mining Sciences. 93(C):76–81. DOI:10.1016/j.ijrmms.2017.01.015
  13. Carri, A., Valletta, A., Cavalca, E., Savi, R. & Segalini, A. (2021). Advantages of IoT-Based Getochnical Monitoring Systems Integrating Automatic Procedures for Data Acquisition and Elaboration. Sensors, 21(6), 2249. https://doi.org/10.3390/s21062249
  14. Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham M., Kuras O., Merritt A. & Wragg, J. (2014). 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics, 12(1), 61–72. https://doi.org/10.3997/1873-0604.2013002
  15. Dunnicliff, J. (1993). Geotechnical instrumentation for monitoring field performance. John Wiley & Sons.
  16. Fernandez-Steeger, T.M., Hu, H., Li, C. & Azzam, R. (2015). Wireless Sensor Networks and Sensor Fusion for Early Warning in Engineering Geology. In: Lollino G. et al. (eds) Engineering Geology for Society and Territory, Vol. 2. Springer, Cham. https://doi.org/10.1007/978-3-319-09057-3_251
  17. Gorska, K., Muszyński, Z. & Rybak, J. (2013). Displacement monitoring and sensivity analysis in the observational method. Studia Geotechnica et Mechanica, 35 (3): 25–43. DOI:10.2478/sgem-2013-0028
  18. Gunn, D., Chambers, J., Uhlemann, S., Wilkinson, P., Meldrum, P., Dijkstra, T., Haslam, E., Kirkham, M., Wragg, J., Holyoake, S., Hughes, P., Hen-Jones, R. & Glendinning, S., (2015). Moisure monitoring in clay embankment using electrical resistivity tomography. Construction and Building Materials, 92, 82–94. https://doi.org/10.1016/j.conbuildmat.2014.06.007
  19. Intrieri E., Gigli N., Nadim F. (2013) Landslide early Warning System: Toolbox and General Concepts. Natural Hazards and Earth System Sciences. 13(1):85–90.
  20. Jamiolkowski, M. (2014). Soil mechanics and the observational method: challenges at the Zelazny Most copper tailings disposal facility. Geotechnique, 64(8), 590–619. https://doi.org/10.1680/geot.14.RL.002
  21. Jiang, Q. & Feng, X. (2011). Intelligent stability design of large underground hydraulic caverns: Chinese method and practice. Energies, 4(10), 1542–1562. https://doi.org/10.3390/en4101542
  22. John A., (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A comprehensive Case Study for Low Movements Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1, 35–58. https://doi.org/10.3390/mining1010004
  23. Kurpiewska, I. Wcisło, A., Czarnecki, L. & Jurczyk M. (2013). Classification of geotechnical-threat areas located in open-cast mines as a tool of safety optimization of exploitation based on example of Szczerców Field. Górnictwo Odkrywkowe, R. 54, nr 1.: 5–12. (in Polish)
  24. Maddison, S. & Smith, B. (2014). New advances for wireless remote condition monitoring in tunnel deformation and track tilt. In: Railway condition monitoring (RCM 2014), 6th IET Conference on IET 2014. 1–5. DOI: 10.1049/cp.2014.1003
  25. Masoudian, M. S., Zevgolis, I. E., Deliveris, A. V., Marshall, A. M., Heron, C. M. & Koukouzas, N. C. (2019). Stability and characterisation of spoil heaps in European surface lignite mines: a state-of-the-art review in light of new data. Environmental Earth Sciences, 78(16), 505. https://doi.org/10.1007/s12665-019-8506-7
  26. Mazzanti, P. (2012). Remote monitoring of deformation. An overview of the seven methods described in previous GINs. Geotechnical News, 30(4), 24–29.
  27. Mazzanti, P. (2017). Toward transportation asset management: what is the role of geotechnical monitoring? Journal of Civil Structural Healtg Monitoring, 7(1). https://doi.org/10.1007/s13349-017-0249-0
  28. Minardo A., Zeni L., Coscetta A., Ester C., Zeni G., Damiano E., De Cristofaro M., Olivares L. 2021. Distributed Optical Fiber Sensor Applications in Geotechnical Monitoring. Sensors, 21, 7514.
  29. Patel, D. (2012). The Observational Method, ICE Manual of Geotechnical Engineering, 1489–1501.
  30. Peck, R.B. (1969). Advantages and limitations of the Observational Method in applied soil mechanics, Geotechnique, 19 (2):171–187.
  31. PN-EN 1997-2:2009 – Eurocode 7: Geotechnical design
  32. Ramesh, M. V. (2014). Design, development, and deployment of a wireless sensor network for detection of landslides. Ad Hoc Networks, 13, 2–18. https://doi.org/10.1016/j.adhoc.2012.09.002
  33. Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). The opinion on the evaluation of the situation in the working area of the Z-48 stacker in relation to increased deformation activity registered by inclinometers GTO-10, GTO-15 and IN-38. (in Polish)
  34. Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). Preliminary analysis of geological and engineering conditions in the north-eastern region of the Turów Mine. (in Polish)
  35. Rybicki, S., Fiszer, J., Flisiak, J., Kowalski, M. & Jakóbczyk, J. (2019). Scientific supervision over the process of designing and operating the internal dump at PGE GIEK S.A. Turów Lignite Mine. Report for the period from 01.04.2019 to 30.06.2019. (in Polish)
  36. Segalini, A., Carri, A., Valletta, A. & Cavalca, E. (2019). Internet-of-Things principles applied to geotechnical monitoring activities: The Internet of Natural Hazards (IoNH) approach. 3rd ICITG – International Conference on Information Technology in Geo-Engineering.
  37. Severin, J., Eberhardt, E., Leoni, L., Fortin, S. 2014. Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar. Engineering Geology, 181, 202–211.
  38. Shentu, N., Zhang, H., Li, Q. & Zhou, H. (2011). Research on an electromagnetic induction-based deep displacement sensor. IEEE Sensors Journal, 11(6), 1504 – 1515. DOI: 10.1109/JSEN.2010.2086056
  39. Shentu, N., Zhang, H., Li, Q., Zhou, H., Tong, R. & Li, X. (2012). A theoretical Model to Predict Both Horizontal and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors. Sensors, 12(1), 233–259. https://doi.org/10.3390/s120100233
  40. Silva A., Girao Sotomayor J.M., Torres V.F.N. (2021). Correlations of geotechnical monitoring data in open pit slope back-analysis – A mine case study. Journal of the Southern African Institute of Mining and Metallurgy, 121(10):557–564
  41. Spross, J., Johansson, F. (2017). When is the observational method in geotechnical engineering favourable? Structural safety, 66, 17–26. https://doi.org/10.1016/j.strusafe.2017.01.006
  42. Stacey, P., Franca, P., Beale, G. 2018. Design implementation and operational consideration. Guidelines for Open Pit Slope Design in Weak Rocks. Vol. 1. Martin, D. and Stacey, P. (eds). CSIRO Publishing, Clayton, Australia.
  43. Stark T. & Choi H. (2008). Slope inclinometers for landslides. Landslides, 5(3,: 339–350. https://doi.org/10.1007/s10346-008-0126-3
  44. Stiros, S., Vichas, C. & Skourtis, C. (2004). Landslide Monitoring Based on Geodetically Derived Distance Changes. Journal of Surveying Engineering, 130(4), 156–162. DOI:10.1061/(ASCE)0733-9453(2004)130:4(156)
  45. Stolecki L., Szczerbiński K. (2022). Practical Use of Measuring the Deflection of Roof Layers in the Assessment of the Stability of Mining Excavations in the Polish Copper Ore Mine “Polkowice-Sieroszowice”. Mining, 2, 13–31. https://doi.org/10.3390/mining2010002
DOI: https://doi.org/10.2478/sgem-2022-0013 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 239 - 251
Submitted on: Nov 8, 2021
Accepted on: May 25, 2022
Published on: Jul 27, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Miłosz Bąk, Irena Bagińska, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.