Have a personal or library account? Click to login
Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection Cover

Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection

Open Access
|Mar 2022

References

  1. Banerjee M.B., Katoch D.C., Dube G.S., Banerjee, K. (1981), Bounds for growth rate of perturbation in thermohaline convection, Proc. Roy. Soc. London A, 378, 301–304.
  2. Finlayson B.A. (1970), Convective instability of ferromagnetic fluids, J. Fluid Mech., 40, 753–767.
  3. Gupta M.D., Gupta A.S. (1979), Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis, Int. J. Eng. Sci., 17, 271–277.
  4. Gupta J.R., Sood.S.K., Shandil.R.G., Banerjee M.B., Banerjee K. (1983), Bounds for the growth of a perturbation in some double-diffusive convection problems, J. Aust. Math. Soc. Ser. B, 25, 276–285.
  5. Lalas D.P., Carmi S. (1971), Thermoconvective stability of ferrofluids, Phys. Fluids, 14(2), 436–437.
  6. Nataraj R., Bhavya S. (2019), Effect of Exponentially Temperature-Dependent Viscosity on the Onset of Penetrative Ferro-Thermal-Convection in a Saturated Porous Layer via Internal Heating, Journal of Electromagnetic Analysis and Applications, 11, 101–116.
  7. Odenbach S. (2002), Ferrofluids: Magnetically controllable fluids and their applications, Springer-Verlag, Berlin, Heidelberg.
  8. Odenbach S. (2002a), Magnetoviscous effects in ferrofluids, Springer-Verlag, Berlin, Heidelberg.
  9. Prakash J. (2012), On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer, J. Magn. Magn. Mater. 324(8), 1523–1527.
  10. Prakash J. (2013), On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer, J. Porous Media, 16(3), 217–226.
  11. Prakash J., and Gupta S. (2013), On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer, J. Magn. Magn. Mater. 345, 201–207.
  12. Prakash J. (2014), On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer, J. Appl. Fluid Mech. 7(1), 147–154.
  13. Prakash J., Vaid K., Bala R. (2014), Upper limits to the complex growth rates in triply diffusive convection, Proc. Indian Nat. Sci. Acad., 80(1), 115–122.
  14. Prakash J., Bala R., Kumari K. (2017), Upper bounds for the complex growth rates in ferromagnetic convection in a rotating porous medium: Darcy-Brinkman Model, Bull. Cal. Math. Soc. 109(2), 153–170.
  15. Prakash J., Kumar R., Kumari K. (2017a), Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied, Studia Geotech. et Mech. 39(3), 39–46.
  16. Rahman, H., and Suslov S.A. (2015), Thermomagnetic convection in a layer of ferrofluids placed in a uniform oblique external magnetic field, J. Fluid Mech. 764, 316–348.
  17. Rosensweig R.E., Zahn M., Volger T. (1978), Stabilization of fluid penetration through a porous medium using magnetisable fluids, in: Thermomechanics of magnetic fluids (Ed. B. Berkovsky), Hemisphere, Washington, DC, 195–211.
  18. Rosensweig. R. E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.
  19. Sekar. R. and Vaidyanathan G. (1993), Convective instability of a magnetized ferrofluid in a rotating porous medium, Int. J. Eng. Sci. 31, 1139–1150.
  20. Sekar R., Vaidyanathan G., Ramanathan A. (1993), The ferroconvection in fluids saturating a rotating densely packed porous medium, Int. J. Eng. Sci. 13, 241–250.
  21. Sekar R., Vaidyanathan G., Ramanathan A. (1996), Ferroconvection in an anisotropic porous medium, Int. J. Engng. Sci. 34(4), 399–405.
  22. Sekar R., Vaidyanathan G., Ramanathan A. (2000), Effect of rotation on ferrothermohaline convection, J. Magn. Magn. Mater. 218, 266–272.
  23. Sekar R., Raju K., Vasanthakumari R. (2013), A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium, J. Magn. Magn. Mater. 331, 122–128.
  24. Sekar, R. and Raju K. (2015), Effect of sparse distribution pores in thermohaline convection in a micropolar ferromagnetic fluid, J. Appl. Fluid Mech., 8(4), 899–910.
  25. Sekar R., and Murugan D. (2018), Stability analysis of ferrothermohaline convection in a Darcy porous medium with Soret and MFD viscosity effects, Tecnica Italiana-Ita. J. Engng. Sci. 61+1(2), 151–161.
  26. Shliomis M. I. (1974), Magnetic Fluids, Sov. Phys. Uspekhi, 17, 153–169.
  27. Sunil, Bharti P.K., Sharma R.C. (2004), Thermosolutal convection in ferromagnetic fluid, Arch. Mech., 56(2), 117–135.
  28. Sunil, Divya, and Sharma R.C. (2004a), Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium, J. Geophys. Eng., 1, 116–127.
  29. Vaidyanathan G., Sekar R., Balasubramanian R. (1991), Ferroconvective instability of fluids saturating a porous medium, Int. J. Engng. Sci., 29, 1259–1267.
  30. Vaidyanathan G., Sekar R., Ramanathan A. (1995), Ferro thermohaline convection in a porous medium, J. Magn. Magn. Mater. 149, 137–142.
  31. Vaidyanathan G., Sekar R., Ramanathan A. (1997), Ferrothermohaline convection, J. Magn. Magn. Mater. 176, 321–330.
DOI: https://doi.org/10.2478/sgem-2022-0005 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 114 - 122
Submitted on: Jun 13, 2020
Accepted on: Dec 29, 2021
Published on: Mar 10, 2022
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Kaka Ram, Jyoti Prakash, Kultaran Kumari, Pankaj Kumar, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.