References
- Abolmaali, A. Mikhaylova, A. Wilson, J. Lundy (2012), Performance of steel fiber-reinforced concrete pipes, Transp Res Rec, 2313(1):168–77.
- Al Rikabi F.T., Sargand S.M., Kurdziel J. (2019), Evaluation of synthetic fiber reinforced concrete pipe performance using three-edge bearing test, J Test Eval., 47(2):942–58.
- Al Rikabi F.T., Sargand S.M., Kurdziel J., Hussein H.H. (2018), Experimental investigation of thin-wall synthetic fiber-reinforced concrete pipes, ACI Struct J., 115(6):1671–81.
- Company information materials, ETUTIT.
- Company information materials, PERFECT.
- Company information materials, HABA BETON.
- Company information materials, HUMES.
- De la Fuente A., Escariz R.C., de Figueiredo A.D., Molins C., Aguado A. (2012), A new design method for steel fibre reinforced concrete pipes, Construct Build Mater, 30:547–55.
- De la Fuente A., Escariz R.C., de Figueiredo A.D., Aguado A. (2013), Design of macro-synthetic fibre reinforced concrete pipes, Construct Build Mater, 43:523–32.
- Deng Z., Liu X., Chen P. et al. (2021a), Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 1: Experimental Program, Structural Concrete, 1–17.
- Deng Z., Liu X., Chen P. et al. (2021b), Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 2: Numerical and parametric analysis, Structural Concrete, 1–18.
- Deng Z., Liu X., Liang N. et al. (2021c), Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines, Fibers, 9(7), 43.
- Haktanir T., Ari K., Altun F., Karahan O. (2007), A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test, Construct Build Mater, 21(8):1702–8.
- Karwowska J., Łapko A. (2011), Przydatność stosowania nowoczesnych kompozytów fibrobetonowych w konstrukcjach budowlanych, Budownictwo i Inżynieria Środowiska, Vol. 2, No. 1, 41–46.
- Kizilkanat A.B., Kabay N., Akyüncü V., Chowdhury S., Akça A.H. (2015), Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study, Construct Build Mater, 100:218–24.
- Kolonko A., Kolonko A. (2005), Rury i elementy z topionego bazaltu w zastosowaniu do budowy i renowacji przewodów kanalizacyjnych, Gaz, Woda i Technika Sanitarna, Nr 6/2005, 14–19.
- Lee S., Park Y., Abolmaali A. (2019), Investigation of flexural toughness for steel-and-synthetic-fiber-reinforced concrete pipes, Structure, 19:203–11.
- Madryas C., Wysocki L., Kolonko A. (2002), Konstrukcje przewodów kanalizacyjnych, Oficyna Wydawnicza Politechniki Wrocławskiej.
- Madryas C. (2007a), Beton w infrastrukturze podziemnej miast przyszłości, Geoinżynieria: drogi, mosty, tunele, Nr 4/2007, 28–35.
- Madryas C. (2007b), Współczesne materiały konstrukcyjne w podziemnej infrastrukturze sieciowej miast, Materiały Budowlane, Nr 2/2007, 15–21.
- Mohamed N., Soliman A.M., Nehdi M.L. (2014), Full-scale pipes using dry-cast steel fibre-reinforced concrete, Construct Build Mater, 72:411–22.
- Mohamed N., Soliman A.M., Nehdi M.L. (2015), Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes, Eng Struct, 84:287–99.
- Peyvandi A., Soroushian P., Jahangirnejad S. (2013a), Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement, Construct Build Mater, 45:36–44.
- Peyvandi A., Soroushian P. (2013b), Structural performance of dry-cast concrete nanocomposite pipes, Materials and Structures, 48:461–470.
- Peyvandi A., Ahmed Sbia L., Soroushian P., Sobolev K. (2013), Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite, Constr Build Mater 48:265–269.
- Sim J., Park C., Moon D.Y (2005), Characteristics of basalt fiber as a strengthening material for concrete structures, Compos Part B Eng., 36(6):504–12.
- Szruba M. (2017), Rury w infrastrukturze, Nowoczesne Budownictwo Inżynieryjne, nr 1, s. 42–47.