Have a personal or library account? Click to login
Numerical analysis of the transport of brine in the Odra River downstream of a mine's discharge Cover

Numerical analysis of the transport of brine in the Odra River downstream of a mine's discharge

Open Access
|Dec 2021

References

  1. Demchak, J., Skousen, J., McDonald, L. M. (2004). Longevity of Acid Discharges from Underground Mines Located above the Regional Water Table. J. Environ. Qual. pp. 656–668. 33
  2. Gao, L., Barrett, D., Chen, Y., Zhou, M., Cuddy, S., Paydar, Z., Renzullo, L. (2014). A systems model combining process-based simulation and multi-objective optimisation for strategic management of mine water. Environmental Modelling & Software. pp. 250–264. 60
  3. Gomes, C. J. B., Mendes, C. A. B., Costa, J. F. C. L. (2011). The Environmental Impact of Coal Mining: A Case Study in Brazil's Sangão Watershed, Mine Water Environ, pp. 159–168, 30. DOI 10.1007/s10230-011-0139-3.
  4. Bleninger, T., Jirka G.H. (2011). Mixing zone regulation for effluent discharges into EU waters. In: Proceedings of the Institution of Civil Engineers - Water Management. pp. 387–396. 164:8
  5. International network for Acid Prevention. (2009). Global Acid Rock drainage Guide (GARd Guide). Available at: http://www.gardguide.com
  6. Opitz, J., Timms, W. (2016). Mine water discharge quality – a review of classification frameworks. In: Proceedings of the International Mine Water Association. pp. 17–26, IMWA. Available at: https://www.imwa.info/docs/imwa_2016/IMWA2016_Opitz_58.pdf.
  7. Gzyl, G., Janson, E., Łabaj, P. (2017). Mine Water Discharges in Upper Silesian Coal Basin (Poland), in Bech, J., Bini, C., and Peshkevich, M. A. (Eds.) Assessment, Restoration And Reclamation Of Mining Influenced Soils. pp. 463–486. Academic Press – Elsevier
  8. Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., Schulz, C. (2013). Salinisation of rivers: An urgent ecological issue. Environmental Pollution, 173, pp. 157–167. doi:10.1016/j.envpol.2012.10.011
  9. Jirka, G.H., Bleninger, T., Burrows, R., Larsen, T. (2004). Management of point source discharges into rivers: Where do environmental quality standards in the new EC-water framework directive apply?. International Journal of River Basin Management, 2:3, pp. 225–233
  10. Cañedo-Argüelles, M. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica 39, 185–211
  11. World Meteorological Organization (WMO). (2013). Planning of water quality monitoring systems. Technical Report Series No. 03. No. 1113 Available at: https://library.wmo.int/doc_num.php?explnum_id=7821
  12. Soroko, K. Danis, M. Gola, S. Turkiewicz, W. (2015). Proposal of salt deposit utilization in the range of ventilation and aero logical natural hazards on the level of copper ore deposit within “GGP” area. CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud, nr 3 (76), pp. 115–130.
  13. Zieliński, S., Stefanek, P., Kostecki, S.W. (2021). Zarządzanie zasobami wody przemysłowej na przykładzie OUOW Żelazny Most. In: Bezpieczeństwo Budowli Hydrotechnicznych. Edited by Winter, J. Winter, J. Wita, A. Popielski, P. Sieinski, E. Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Warszawa pp. 63–72.
  14. Instytut OZE. (2018). Projekt budowlany: Wykonanie nowej instalacji rozprowadzającej w dnie rzeki Odra [Unpublished]. Kielce.
  15. Jarvis, A. P., Davis, J. E., Orme, P. H. A., Potter, H. A. B., Gandy, C. J. (2019). Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance Approach, Environ. Sci. Technol., 53, pp. 702–709.
  16. Kruse, N. A., Stoertz, M. W., Green, D. H., Bowman, J. R., Lopez, D. L. (2014). Acidity Loading Behavior in Coal-Mined Watersheds, Mine Water Environ 33, pp. 177–186. DOI 10.1007/s10230-014-0269-5.
  17. Mack, B., Skousen, J., McDonald, L. M. (2015) Effect of Flow Rate on Acidity Concentration from Above-Drainage Underground Mines. Mine Water Environ 34, pp. 50–58. DOI 10.1007/s10230-014-0278-4
  18. Jirka, G.H. (2001). Large scale flow structures and mixing processes in shallow flows. J. of Hydraulic Research 39(6), pp. 567–573. DOI:10.1080/00221686.2001.9628285
  19. Ritta, A. G. S. L., Almeida, T. R., Chacaltana, J. T. A., Moreira, R. M. (2020). Numerical Analysis of the Effluent Dispersion in Rivers with Different Longitudinal Diffusion Coefficients, Journal of Applied Fluid Mechanics, Vol. 13, No. 5, pp. 1551–1559, 2020. DOI: 10.36884/jafm.13.05.31015.
  20. Kostecki, S.W. (2008). Numerical modelling of flow through moving water-control gates by vortex method. Part I – problem formulation. Archives of Civil and Mechanical Engineering 8(3), pp. 73–89.
  21. Yakhot, V., Smith, L.M. (1992). The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence Models. Journal of Scientific Computing, 7, No. 1.
  22. Sánchez-Juny, M., Triadú, A., Andreu, A., Bladé, E. (2019). Hydrodynamic Determination of the Kinematic Viscosity of Waste Brines. ACS Omega 4 (25), pp. 20987–20999. DOI: 10.1021/acsomega.9b02164
DOI: https://doi.org/10.2478/sgem-2021-0036 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 366 - 379
Submitted on: Oct 23, 2021
|
Accepted on: Nov 19, 2021
|
Published on: Dec 22, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Szymon Zieliński, Stanisław Kostecki, Paweł Stefanek, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.