References
- Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. J. (2016). Effect of spatial correlation length on the bearing capacity of an eccentrically loaded strip footing. In 6th Asian-Pacific Symposium on Structural Reliability and its Applications-APSSRA 2016 (pp. 312–317). Tongji University.
- Bagińska, I., Kawa, M., & Janecki, W. (2018). Estimation of spatial variability properties of mine waste dump using CPTu results—case study. In Cone Penetration Testing 2018 (pp. 109–115). CRC Press.
- Cami, B., Javankhoshdel, S., Phoon, K. K., & Ching, J. (2020). Scale of fluctuation for spatially varying soils: estimation methods and values. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(4), 03120002.
- Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers, 9(6), 1597–1608.
- Chwała, M. (2020a). Soil sounding location optimisation for spatially variable soil. Géotechnique Letters, 10(3), 409–418.
- Chwała, M. (2020). On determining the undrained bearing capacity coefficients of variation for foundations embedded on spatially variable soil. Studia Geotechnica et Mechanica, 42(2).
- Chwała, M., & Kawa, M. (2021). Random failure mechanism method for working platform bearing capacity assessment with a linear trend in undrained shear strength. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2021.06.004
- Doob, J. L. (1953). Stochastic processes (Vol. 10). Wiley: New York.
- EN 1990 (2002). Eurocode - Basis of structural design. European Committee for Standardization; 2002
- Fenton, G. A., & Griffiths, D. V. (2003). Bearing-capacity prediction of spatially random c ϕ soils. Canadian geotechnical journal, 40(1), 54–65.
- Fenton, G. A., Griffiths, D. V., & Williams, M. B. (2005). Reliability of traditional retaining wall design. Geotechnique, 55(1), 55–62.
- Griffiths, D. V., & Fenton, G. A. (2001). Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited. Geotechnique, 51(4), 351–359.
- Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic slope stability analysis by finite elements. Journal of geotechnical and geoenvironmental engineering, 130(5), 507–518.
- Huang, L., Cheng, Y. M., Leung, Y. F., & Li, L. (2019). Influence of rotated anisotropy on slope reliability evaluation using conditional random field. Computers and Geotechnics, 115, 103133.
- ISO 2394: 2015 (2015) General principles on reliability for structures; International Standard Organization.
- Itasca. 2011. FLAC (Fast Largrangian Analysis of Continua) User's Manuals. Minneapolis: Itasca Consulting Group, Inc
- Jha, S. K., & Ching, J. (2013a). Simplified reliability method for spatially variable undrained engineered slopes. Soils and Foundations, 53(5), 708–719.
- Jha, S. K., & Ching, J. (2013b). Simulating spatial averages of stationary random field using the fourier series method. Journal of Engineering Mechanics, 139(5), 594–605.
- Kawa, M., Bagińska, I., & Wyjadłowski, M. (2019). Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of Civil and Mechanical Engineering, 19(2), 598–613.
- Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–ϕ soil. Acta Geotechnica, 15(6), 1453–1466.
- Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis of the diaphragm wall using the hardening soil-small (HSs) model. Engineering Structures, 232, 111869.
- Li, Y., Fenton, G. A., Hicks, M. A., & Xu, N. (2021). Probabilistic Bearing Capacity Prediction of Square Footings on 3D Spatially Varying Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering, 147(6), 04021035.
- Lloret-Cabot, M. F. G. A., Fenton, G. A., & Hicks, M. A. (2014). On the estimation of scale of fluctuation in geostatistics. Georisk: Assessment and management of risk for engineered systems and geohazards, 8(2), 129–140.
- Meyerhof, G. (1953). The bearing capacity of foundations under eccentric and inclined loads. In Proc. of the 3rd Int. Conf. on SMFE (Vol. 1, pp. 440–445).
- Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of geotechnical variability. Canadian geotechnical journal, 36(4), 612–624.
- Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & Fenton, G. A. (2015). Influence of embedment, self-weight and anisotropy on bearing capacity reliability using the random finite element method. Computers and Geotechnics, 67, 229–238.
- Pieczyńska-Kozłowska, J., Bagińska, I., & Kawa, M. (2021). The Identification of the Uncertainty in Soil Strength Parameters Based on CPTu Measurements and Random Fields. Sensors, 21(16), 5393.
- Puła, W., & Zaskórski, Ł. (2015). Estimation of the probability distribution of the random bearing capacity of cohesionless soil using the random finite element method. Structure and Infrastructure Engineering, 11(5), 707–720.
- Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). Probabilistic analysis of responses of cantilever wall-supported excavations in sands considering vertical spatial variability. Computers and Geotechnics, 75, 182–191.
- Soubra, A. H. (2009). Reliability-based analysis and design of eccentrically loaded footings. In Contemporary Topics in In Situ Testing, Analysis, and Reliability of Foundations (pp. 379–386).
- Vanmarcke, E. (2010). Random fields: analysis and synthesis. World scientific.
- Vessia, G., Cherubini, C., Pieczyńska, J., & Puła, W. (2009). Application of Random Finite Element Method to Bearing Capacity Design of Strip Footing. Journal of GeoEngineering, 4(3), 103–112.
- Wyjadłowski, M., Bagińska, I., & Reiner, J. (2018). Probabilistic assessment of pile capacity based on CPTu probing including random pile foundation depth. In MATEC Web of Conferences (Vol. 196, p. 01058). EDP Sciences.