References
- Abe, S., V. Boros, W. Hancock, and D. Weatherley (2014), ESyS-particle tutorial and user's guide. Version 2.3.1, https://launchpad.net/esys-particle.
- Basu, A., D. A. Mishra, and K. Roychowdhury (2013), Rock failure modes under uniaxial compression, Brazilian, and point load tests, Bull Eng Geol Environ, 72:457–475, DOI 10.1007/s10064-013-0505-4
- Carmona, H.A., F.K. Wittel, F. Kun, and H.J. Herrmann (2008), Fragmentation processes in impact of spheres, Phys. Rev. E 77, 5, 051302, DOI: 10.1103/PhysRevE.77.051302.
- Courtney, T.H. (1990), Mechanical Behavior of Materials, McGraw-Hill, New York.
- Cundall, P.A. (1971), A computer model for simulating progressive, large-scale movement in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech. 2, 8.
- Cundall, P.A. (1974), A computer model for rock-mass behavior using interactive graphics for the input and output of geometrical data, National Technical Information Service, Report no. AD/A-001 602.
- Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotechnique 29, 1, 47–65, DOI: 10.1680/geot.1979.29.1.47.
- Do, H. Q., Aragón, A. M., and Schott, D. L. (2017). Automated discrete element method calibration using genetic and optimization algorithms. In EPJ Web of Conferences (Vol. 140). EDP Sciences. https://doi.org/10.1051/epjconf/201714015011.
- Egholm, D.L. (2007), A new strategy for discrete element numerical models: 1. Theory, J. Geophys. Res. 112, B5, B05203, DOI: 10.1029/2006JB004557.
- Ferdowsi, B. (2014), Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering, doctoral dissertation
- Fraige, F.Y., and P.A. Langston (2004), Integration schemes and damping algorithms in distinct element models, Adv. Powder Technol. 15, 2, 227–245, DOI: 10.1163/156855204773644454.
- Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Philosophic. Trans. Roy. Soc. London A, 221, 582–593, DOI: 10.1098/rsta.1921.0006.
- Hertzberg, R.W. (1976), Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.
- Jaeger, J.C., N.G.W. Cook, and R. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell Publ., Malden, 488 pp.
- Kazerani, T. (2013), A discontinuum-based model to simulate compressive and tensile failure in sedimentary rock, J. Rock Mech. Geotech. Eng. 5, 5, 378–388, DOI: 10.1016/j.jrmge.2013.07.002.
- Klejment P. (2020), The Microscopic Insight into Fracturing of Brittle Materials with the Discrete Element Method (Doctoral Dissertation), Publications of the Institute of Geophysics Polish Academy of Sciences – Geophysical Data Bases, Processing and Instrumentation 427 (A-31), DOI: 10.25171/InstGeoph_PAS_Publs-2020-001
- Klemm A., D. Wiggins (2016), Sustainability of Construction Materials. Second edition, Woodhead Publishing, Cambridge.
- Li, Y.-G., ed. (2012), Imaging, Modeling and Assimilation in Seismology, De Gruyter, Berlin.
- Łukaszewski, P. (2003), Development of fracture processes in Silesian Carboniferous sandstones, Geological Quarterly, vol. 47, (1), 29–38.
- Łukaszewski, P. (2013), The deformation of flysch sandstones in a complex state of stress, Wydawnictwo Uniwersytetu Warszawskiego, 221, (in Polish, with English summary).
- Mora, P., and D. Place (1993), A lattice solid model for the nonlinear dynamics of earthquakes, Int. J. Modern Phys. C 4, 6, 1059–1074, DOI: 10.1142/S0129183193000823.
- Mora, P., and D. Place (1994), Simulation of the frictional stick-slip instability, Pure Appl. Geophys. 143, 61–87, DOI: 10.1007/BF00874324.
- Mora, P. and D. Place (2002). “Stress correlation function evolution in lattice solid elasto-dynamic models of shear and fracture zones and earthquake prediction.” Pure and Applied Geophysics, 159(10): 2413–2427.
- Munjiza, A. (2004), The Combined Finite-Discrete Element Method, John Wiley & Sons, Chichester.
- Nitka, M., and J. Tejchman (2015), Modelling of concrete behaviour in uniaxial compression and tension with DEM, Granular Matter 17, 1, 145–164, DOI: 10.1007/s10035-015-0546-4.
- O’Sullivan, C. (2011), Particulate Discrete Element Modelling: A Geomechanics Perspective, Spon Press/Taylor and Francis, London.
- O’Sullivan, C., and J.D. Bray (2004), Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput. 21, 2–4, 278–303, DOI: 10.1108/02644400410519794.
- Onate, E., and J. Rojek (2004), Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Computer Meth. Appl. Mech. Eng. 193, 27–29, 3087–3128, DOI: 10.1016/j.cma.2003.12.056.
- Orowan, E. (1949), Fracture and strength of solids, Rep. Prog. Phys. 12, 1, 185–232, DOI: 10.1088/0034-4885/12/1/309.
- Potyondy, D.O., and P.A. Cundall (2004), A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci. 41, 8, 1329–1364, DOI: 10.1016/j.ijrmms.2004.09.011.
- Rojek, J. (2007), Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych, Prace IPPT PAN, Warszawa (in Polish).
- Sochor, M. (1998), Strength of Materials I, CTU Publishing House, Prague.
- Wang Y., S. Abe, S. Latham and, P. Mora (2006), Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model, Pure and Applied Geophysics 163, 1769–1785, doi 10.1007/s00024-006-0096-0
- Wang, Y.C. (2009), A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations, Acta Geotech. 4, 2, 117–127, DOI: 10.1007/s11440-008-0072-1.
- Wang, Y.C., S. Xue, and J. Xie (2012), Discrete element method and its applications in earthquake and rock fracture modelling. In: Y.-G. Li (ed.) Imaging, Modeling and Assimilation in Seismology, De Gruyter, 235–262.
- Weatherley, D.K., V.E. Boros, W.R. Hancock, and S. Abe (2010), Scaling benchmark of EsyS-Particle for elastic wave propagation simulations, 2010 IEEE Sixth Int. Conf. e-Science, Brisbane, Australia, 277–283, DOI: 10.1109/eScience.2010.40.