Have a personal or library account? Click to login
Strength of industrial sandstones modelled with the Discrete Element Method Cover

Strength of industrial sandstones modelled with the Discrete Element Method

Open Access
|Oct 2021

References

  1. Abe, S., V. Boros, W. Hancock, and D. Weatherley (2014), ESyS-particle tutorial and user's guide. Version 2.3.1, https://launchpad.net/esys-particle.
  2. Basu, A., D. A. Mishra, and K. Roychowdhury (2013), Rock failure modes under uniaxial compression, Brazilian, and point load tests, Bull Eng Geol Environ, 72:457–475, DOI 10.1007/s10064-013-0505-4
  3. Carmona, H.A., F.K. Wittel, F. Kun, and H.J. Herrmann (2008), Fragmentation processes in impact of spheres, Phys. Rev. E 77, 5, 051302, DOI: 10.1103/PhysRevE.77.051302.
  4. Courtney, T.H. (1990), Mechanical Behavior of Materials, McGraw-Hill, New York.
  5. Cundall, P.A. (1971), A computer model for simulating progressive, large-scale movement in blocky rock systems, Proc. Symp. Int. Soc. Rock Mech. 2, 8.
  6. Cundall, P.A. (1974), A computer model for rock-mass behavior using interactive graphics for the input and output of geometrical data, National Technical Information Service, Report no. AD/A-001 602.
  7. Cundall, P.A., and O.D.L. Strack (1979), A discrete numerical model for granular assemblies, Geotechnique 29, 1, 47–65, DOI: 10.1680/geot.1979.29.1.47.
  8. Do, H. Q., Aragón, A. M., and Schott, D. L. (2017). Automated discrete element method calibration using genetic and optimization algorithms. In EPJ Web of Conferences (Vol. 140). EDP Sciences. https://doi.org/10.1051/epjconf/201714015011.
  9. Egholm, D.L. (2007), A new strategy for discrete element numerical models: 1. Theory, J. Geophys. Res. 112, B5, B05203, DOI: 10.1029/2006JB004557.
  10. Ferdowsi, B. (2014), Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering, doctoral dissertation
  11. Fraige, F.Y., and P.A. Langston (2004), Integration schemes and damping algorithms in distinct element models, Adv. Powder Technol. 15, 2, 227–245, DOI: 10.1163/156855204773644454.
  12. Griffith, A.A. (1921), The phenomena of rupture and flow in solids, Philosophic. Trans. Roy. Soc. London A, 221, 582–593, DOI: 10.1098/rsta.1921.0006.
  13. Hertzberg, R.W. (1976), Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.
  14. Jaeger, J.C., N.G.W. Cook, and R. Zimmerman (2007), Fundamentals of Rock Mechanics, 4th ed., Blackwell Publ., Malden, 488 pp.
  15. Kazerani, T. (2013), A discontinuum-based model to simulate compressive and tensile failure in sedimentary rock, J. Rock Mech. Geotech. Eng. 5, 5, 378–388, DOI: 10.1016/j.jrmge.2013.07.002.
  16. Klejment P. (2020), The Microscopic Insight into Fracturing of Brittle Materials with the Discrete Element Method (Doctoral Dissertation), Publications of the Institute of Geophysics Polish Academy of Sciences – Geophysical Data Bases, Processing and Instrumentation 427 (A-31), DOI: 10.25171/InstGeoph_PAS_Publs-2020-001
  17. Klemm A., D. Wiggins (2016), Sustainability of Construction Materials. Second edition, Woodhead Publishing, Cambridge.
  18. Li, Y.-G., ed. (2012), Imaging, Modeling and Assimilation in Seismology, De Gruyter, Berlin.
  19. Łukaszewski, P. (2003), Development of fracture processes in Silesian Carboniferous sandstones, Geological Quarterly, vol. 47, (1), 29–38.
  20. Łukaszewski, P. (2013), The deformation of flysch sandstones in a complex state of stress, Wydawnictwo Uniwersytetu Warszawskiego, 221, (in Polish, with English summary).
  21. Mora, P., and D. Place (1993), A lattice solid model for the nonlinear dynamics of earthquakes, Int. J. Modern Phys. C 4, 6, 1059–1074, DOI: 10.1142/S0129183193000823.
  22. Mora, P., and D. Place (1994), Simulation of the frictional stick-slip instability, Pure Appl. Geophys. 143, 61–87, DOI: 10.1007/BF00874324.
  23. Mora, P. and D. Place (2002). “Stress correlation function evolution in lattice solid elasto-dynamic models of shear and fracture zones and earthquake prediction.” Pure and Applied Geophysics, 159(10): 2413–2427.
  24. Munjiza, A. (2004), The Combined Finite-Discrete Element Method, John Wiley & Sons, Chichester.
  25. Nitka, M., and J. Tejchman (2015), Modelling of concrete behaviour in uniaxial compression and tension with DEM, Granular Matter 17, 1, 145–164, DOI: 10.1007/s10035-015-0546-4.
  26. O’Sullivan, C. (2011), Particulate Discrete Element Modelling: A Geomechanics Perspective, Spon Press/Taylor and Francis, London.
  27. O’Sullivan, C., and J.D. Bray (2004), Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput. 21, 2–4, 278–303, DOI: 10.1108/02644400410519794.
  28. Onate, E., and J. Rojek (2004), Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems, Computer Meth. Appl. Mech. Eng. 193, 27–29, 3087–3128, DOI: 10.1016/j.cma.2003.12.056.
  29. Orowan, E. (1949), Fracture and strength of solids, Rep. Prog. Phys. 12, 1, 185–232, DOI: 10.1088/0034-4885/12/1/309.
  30. Potyondy, D.O., and P.A. Cundall (2004), A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci. 41, 8, 1329–1364, DOI: 10.1016/j.ijrmms.2004.09.011.
  31. Rojek, J. (2007), Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych, Prace IPPT PAN, Warszawa (in Polish).
  32. Sochor, M. (1998), Strength of Materials I, CTU Publishing House, Prague.
  33. Wang Y., S. Abe, S. Latham and, P. Mora (2006), Implementation of Particle-scale Rotation in the 3-D Lattice Solid Model, Pure and Applied Geophysics 163, 1769–1785, doi 10.1007/s00024-006-0096-0
  34. Wang, Y.C. (2009), A new algorithm to model the dynamics of 3-D bonded rigid bodies with rotations, Acta Geotech. 4, 2, 117–127, DOI: 10.1007/s11440-008-0072-1.
  35. Wang, Y.C., S. Xue, and J. Xie (2012), Discrete element method and its applications in earthquake and rock fracture modelling. In: Y.-G. Li (ed.) Imaging, Modeling and Assimilation in Seismology, De Gruyter, 235–262.
  36. Weatherley, D.K., V.E. Boros, W.R. Hancock, and S. Abe (2010), Scaling benchmark of EsyS-Particle for elastic wave propagation simulations, 2010 IEEE Sixth Int. Conf. e-Science, Brisbane, Australia, 277–283, DOI: 10.1109/eScience.2010.40.
DOI: https://doi.org/10.2478/sgem-2021-0020 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 346 - 365
Submitted on: Dec 31, 2020
Accepted on: Jul 8, 2021
Published on: Oct 9, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Piotr Klejment, Robert Dziedziczak, Paweł Łukaszewski, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.