Have a personal or library account? Click to login
An assessment of how penetration curve adjustment affects the California bearing ratio (CBR) Cover

An assessment of how penetration curve adjustment affects the California bearing ratio (CBR)

Open Access
|Oct 2021

References

  1. AASHTO T-193. (2007). Standard Method of Test for The California Bearing Ratio.
  2. Al-Joulani, N. (2012). Effect of Stone Powder and Lime on Strength, Compaction and CBR Properties of Fine Soils. Jordan Journal of Civil Engineering, 6(1), 1–16.
  3. Bąk, A., & Chmielewski, R. (2019). The influence of fine fractions content in non-cohesive soils on their compactibility and the CBR value. Journal of Civil Engineering and Management, 25(4), 353–361. https://doi.org/10.3846/jcem.2019.9687
  4. Batog, A., & Hawrysz, M. (2011). Wykorzystanie do budowy nasypów drogowych kruszyw z recyklingu odpadów budowlanych. Geoinżynieria : Drogi, Mosty, Tunele, 3, 32–36.
  5. Bednarek, Ł., & Mazurek, J. (2011). Ocena wpływu domieszek do kruszywa 0 – 63 mm na poprawę jego wskaźnika nośności na podstawie wyników badań własnych. Górnictwo i Geoinżynieria, 35(2), 89–94.
  6. Çelik, A., Yaman, H., Turan, S., Kara, A., Kara, F., Zhu, B., Qu, X., Tao, Y., Zhu, Z., Dhokia, V., Nassehi, A., Newman, S. T., Zheng, L., Neville, A., Gledhill, A., Johnston, D., Zhang, H., Xu, J. J., Wang, G., … Dutta, D. (2017). Guide to Pavement Technology Part 2. Pavement Structural Design. In Austroads. http://dx.doi.org/10.1016/j.cirp.2016.06.001%0A http://dx.doi.org/10.1016/j.powtec.2016.12.055%0A https://doi.org/10.1016/j.ijfatigue.2019.02.006%0A https://doi.org/10.1016/j.matlet.2019.04.024%0A https://doi.org/10.1016/j.matlet.2019.127252%0A http://dx.doi.o
  7. Chebet, F. C., Kalumba, D., & Nyame, S. (2016). California Bearing Ratio (CBR) Tests on Soil Reinforced with Polyethylene (Plastic) Bag Waste Material. Proceedings of the 23rd WasteCon Conference 17–21 October 2016, Emperors Palace, Johannesburg, South Africa, 387–393.
  8. Chmielewski, R., & Waliszewski, D. (2016). Wpływ ciężaru warstw konstrukcyjnych nawierzchni na wartość wskaźnika nośności CBR. Acta Sci. Pol. Architectura, 15(2), 45–54.
  9. Ćwiąkała, M., Gajewska, B., Kraszewski, C., & Rafalski, L. (2016). Laboratory Investigations of Frost Susceptibility of Aggregates Applied to Road Base Courses. Transportation Research Procedia, 14, 3476–3484. https://doi.org/10.1016/j.trpro.2016.05.312
  10. Ebels, L. J., Lorio, R., & van der Merwe, C. (2004). THE IMPORTANCE OF COMPACTION FROM AN HISTORICAL PERSPECTIVE. Proceedings of the 23rd Southern African Transport Conference, 55–55. https://doi.org/10.1177/106002807400800201
  11. Esfahani, M. A., & Goli, A. (2018). Effects of Aggregate Gradation on Resilient Modulus and CBR in Unbound Granular Materials. International Journal of Transportation Engineering, 5(4), 367–381.
  12. Franco, C. A., & Lee, K. W. (1987). Improved California Bearing Ratio Test Procedure. Transportation Research Record, 91–97.
  13. GUS. (2020). Mały Rocznik Statystyczny Polski 2020.
  14. Hajiannia, A., Dorobati, M. T., Kasaeian, S., & Baghbadorian, S. B. (2006). Correlation between the results ofthe PLT and CBR tests to determine the elasticity modulus. The 16th International Conference on Soil Mechanics and Geotechnical Engineering, October, 537–541.
  15. http://redstone-exploration.com/country-profiles/poland/. (2021).
  16. Hydzik-Wiśniewska, J. (2020). The relationship between the mechanical properties of aggregates and their geometric parameters on the example of polish carpathian sandstones. Archives of Civil Engineering, 66(3), 209–223. https://doi.org/10.24425/ace.2020.134393
  17. Hydzik-Wiśniewska, J., & Bednarek, L. (2020). Statistical analysis of mechanical properties on the example of aggregates of Carpathian sandstones. Studia Geotechnica et Mechanica, 42(4), 366–375. https://doi.org/10.2478/sgem-2020-0003
  18. Hydzik-Wiśniewska, J., Wilk, A., Bednarek, Ł., & Olesiak, S. (2018). Mixture of Crushed-Stone Aggregate as Material for Substructure Layers. Studia Geotechnica et Mechanica, 40(2), 154–162. https://doi.org/10.2478/sgem-2018-0014
  19. Jiang, Y., Wong, L. N. Y., & Ren, J. (2015). A numerical test method of California bearing ratio on graded crushed rocks using particle flow modeling. Journal of Traffic and Transportation Engineering (English Edition), 2(2), 107–115. https://doi.org/https://doi.org/10.1016/j.jtte.2015.02.004
  20. Judycki, J., Alenowicz, J., Dołżycki, B., Jaskuła, P., & Pszczoła, M. (2012). Propozycja zmian terminologii drogowych konstrukcji nawierzchni podatnych i półsztywnych i jej zastosowanie w nowym katalogu. Drogownictwo, 12, 405–410.
  21. Katte, V. Y., Mfoyet, S. M., Manefouet, B., Wouatong, A. S. L., & Bezeng, L. A. (2019). Correlation of California Bearing Ratio (CBR) Value with Soil Properties of Road Subgrade Soil. Geotechnical and Geological Engineering, 37(1), 217–234. https://doi.org/10.1007/s10706-018-0604-x
  22. Kozioł, W., Góralczyk, S., Baic, I., & Borcz, A. (2017). Regionalne zmiany bazy surowcowej kruszyw naturalnych do budowy dróg i autostrad. Magazyn Autostrady, 3, 46–52.
  23. Kozioł, W., & Kawalec, P. (2008). Kruszywa alternatywne w budownictwie. Kruszywa, 34–37.
  24. Lorek, A. (2015). Eksploatacja surowców skalnych na terenie województwa śląskiego. Przegląd Górniczy, 7, 62–68.
  25. Mackiewicz, P., & Szydło, A. (2015). Technologie budowy dróg betonowych w świetle nowego „Katalogu typowych konstrukcji nawierzchni sztywnych” Część 1 Nawierzchnie dla dróg gminnych. Builder, 5, 74–80.
  26. Marsh, A. (1983). Force penetration curve corrections in the CBR test. Highway Engineer, 30.
  27. Nguyen, B. T., & Mohajerani, A. (2015). Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils. International Journal of Civil, Structural, Construction and Architectural Engineering, 9(2), 136–141. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.674.2360&rep=rep1&type=pdf
  28. Piłat, J. (2004). Nawierzchnie asfaltowe. Wydawnictwa Komunikacji i Łączności.
  29. PN-EN 13286-2: 2010. Mieszanki niezwiązane i związane hydraulicznie -- Część 2: Metody badań laboratoryjnych gęstości na sucho i zawartości wody -- Zagęszczanie metodą Proktora. (2010).
  30. PN-EN 13286-47: 2012. Mieszanki niezwiązane i związane spoiwem hydraulicznym -- Część 47: Metoda badania do określenia kalifornijskiego wskaźnika nośności. natychmiastowego wskaźnika nośności i pęcznienia liniowego. (2012).
  31. PN-S 06102: 1997. Drogi samochodowe -- Podbudowy z kruszyw stabilizowanych mechanicznie. (1997).
  32. Pourkhorshidi, S., Sangiorgi, C., Torreggiani, D., & Tassinari, P. (2020). Using Recycled Aggregates from Construction and Demolition Waste in Unbound Layers of Pavements. Sustainability, 12(22), 1–20. https://doi.org/10.3390/su12229386
  33. Radziszewski, P., Piłat, J., Plewa, A., & Król, J. (2010). Konstrukcje asfaltowych nawierzchni drogowych z zastosowaniem kruszyw polodowcowych. Drogi i Mosty, 4, 354–358.
  34. Ratna Prasad, R., & Darga Kumar, N. (2015). Effect of Fly Ash on CBR Results of Granular Sub Base Subjected to Modified Compaction. International Journal of Engineering Trends and Technology, 29(1), 35–40. https://doi.org/10.14445/22315381/ijett-v29p207
  35. Rehman, A., Farooq, K., Mujtaba, H., & Altaf, O. (2015). Estimation of California Bearing Ratio (CBR) From Index Properties and Compaction Characteristics of Coarse. Sci.Imt. (Lahore), 27(6), 6207–6210.
  36. Sas, W., & Głuchowski, A. (2014). Nośność podłoża drogowego z destruktu betonowego na przykładzie badań CBR. Civil and Enviromental Engineering, 5, 149–154.
  37. Shoop, S. a, Diemand, D., Wieder, W. L., & Seman, P. M. (2008). Predicting California Bearing Ratio from Trafficability Cone Index Values Cold Regions Research.
  38. Talukdar, D. K. (2014). A Study of Correlation Between California Bearing Ratio (CBR) Value With Other Properties of Soil. International Journal of Emerging Technology and Advanced Engineering, 4(1), 559–562. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.688&rep=rep1&type=pdf
  39. Tan, Y., Hu, M., & Li, D. (2016). Effects of agglomerate size on California bearing ratio of lime treated lateritic soils. International Journal of Sustainable Built Environment, 5(1), 168–175. https://doi.org/https://doi.org/10.1016/j.ijsbe.2016.03.002
  40. Tarasewicz, P., Ćwiąkała, M., Greinert, A., & Korzeniowska, J. (2013). Wykorzystanie gruntów rodzimych do budowy dróg lokalnych na terenach wiejskich. Budownictwo i Architektura, 12(3), 129–136.
  41. Turnbull, W. J., & Ahlvin, R. G. (1957). Mathematical expression of the CBR (California Bearing Ratio) relations. 4Th International Conference on Soil Mechanics and Foundation Engineering, 178–180.
  42. Wojewódzka-Król, K. (2017). New Concepts of Reducing Problems in the Development of Transport Infrastructure in Poland. Zeszyty Naukowe Uniwersytetu Szczecińskiego Problemy Transportu i Logistyki, 39(39), 59–70. https://doi.org/10.18276/ptl.2017.39-06
  43. Xiao, Y., Tutumluer, E., Qian, Y., & Siekmeier, J. (2012). Gradation effects influencing mechanical properties of aggregate base-granular subbase materials in Minnesota. Transportation Research Record, 2267, 14–26. https://doi.org/10.3141/2267-02
  44. Yoder, E. J., & Witczak, M. W. (1975). Principles of pavement design (2d ed.). Wiley New York.
  45. Zawisza, E., & Gruchot, A. (2017). Wytrzymałość na ścinanie i nośność kruszywa z żużli paleniskowych w zależności od warunków wodnych. Acta Sci. Pol. Formatio Circumiectus, 16(4), 13–22.
DOI: https://doi.org/10.2478/sgem-2021-0017 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 323 - 336
Submitted on: Feb 9, 2021
|
Accepted on: May 18, 2021
|
Published on: Oct 9, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Łukasz Bednarek, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.