Have a personal or library account? Click to login
Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data Cover

Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data

Open Access
|Sep 2021

References

  1. Kim, Y., & Bruland, A. (2019). Analysis and evaluation of tunnel contour quality index. Automation in Construction, 99, 223–237.
  2. Costamagna, E., Oggeri, C., Segarra, P., Castedo, R., & Navarro, J. (2018). Assessment of contour profile quality in D&B tunnelling. Tunnelling and Underground Space Technology, 75, 67–80.
  3. Soilán, M., Sánchez-Rodríguez, A., del Río-Barral, P., Perez-Collazo, C., Arias, P., & Riveiro, B. (2019). Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4(4), 58.
  4. Zogg, H. M., & Ingensand, H. (2008). Terrestrial laser scanning for deformation monitoring: Load tests on the Felsenau Viaduct (CH). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B5), 555–562.
  5. Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and nurbs modeling for the deformation monitoring of an earth-rock dam. Sensors, 19(1), 22.
  6. Lenda, G., Siwiec, J., & Kudrys, J. (2020). Multi-Variant TLS and SfM Photogrammetric Measurements Affected by Different Factors for Determining the Surface Shape of a Thin-Walled Dome. Sensors, 20(24), 7095.
  7. Brazeal, R. (2013). Low cost spherical registration targets for terrestrial laser scanning. SUR 6905-point cloud analysis.
  8. Bazarnik, M. (2014). The potential of terrestrial 3D laser scanning in inventory and monitoring of tunnel railway (in Polish). Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne.
  9. Suchocki, C., Damięcka-Suchocka, M., & Katzer, J. 5. Influence of factors on the value of the reflection strength of a laser beam in terrestrial laser scanning (in Polish).
  10. Lemmens, M. (2011). Terrestrial laser scanning. In Geo-information (pp. 101–121). Springer, Dordrecht.
  11. Remondino, F. (2003). From point cloud to surface: the modeling and visualization problem. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34.
  12. Sanchez, T., Conciatori, D., Ben-Ftima, M., & Massicotte, B. (2020). Terrestrial laser scanning for structural inspection with Kriging interpolation. Structure and Infrastructure Engineering, 1–10.
  13. Wang, W., Zhao, W., Huang, L., Vimarlund, V., & Wang, Z. (2014). Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 1(5), 325–337.
  14. Xie, X., & Lu, X. (2017). Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning. Underground Space, 2(1), 16–29.
  15. Yang, Q., Zhang, Z., Liu, X., & Ma, S. (2017). Development of laser scanner for full cross-sectional deformation monitoring of underground gateroads. Sensors, 17(6), 1311.
  16. Cheng, Y. J., Qiu, W., & Lei, J. (2016). Automatic extraction of tunnel lining cross-sections from terrestrial laser scanning point clouds. Sensors, 16(10), 1648.
  17. Han, S., Cho, H., Kim, S., Jung, J., & Heo, J. (2013). Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data. Journal of computing in civil engineering, 27(3), 274–281.
  18. Barla, G., Antolini, F., & Gigli, G. (2016). 3D Laser scanner and thermography for tunnel discontinuity mapping. Geomechanics and Tunnelling, 9(1), 29–36.
  19. Tan, K., Cheng, X., Ju, Q., & Wu, S. (2016). Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE geoscience and remote sensing letters, 13(11), 1711–1715.
  20. Živec, T., Anžur, A., & Verbovšek, T. (2019). Determination of rock type and moisture content in flysch using TLS intensity in the Elerji quarry (south-west Slovenia). Bulletin of Engineering Geology and the Environment, 78(3), 1631–1643.
  21. Pejić, M. (2013). Design and optimisation of laser scanning for tunnels geometry inspection. Tunnelling and underground space technology, 37, 199–206.
  22. Thiel, K. (1995). Physico-mechanical properties and models of rock massifs of the Polish flysch Carpathians (in Polish). IBW PAN Gdańsk, Biblioteka Naukowa Hydrotechnika, (19).
  23. Faro Focus Laser Scanners, (2021), FARO, https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners
  24. SCENE User Manual, (2020), FARO, https://faro.app.box.com/s/uivkgf3jyrxcxn5ofazlohjnadddknhr/file/730718082810
  25. ReCap Support and learning, (2021), Autodesk, https://knowledge.autodesk.com/support/recap/learn?fbclid=IwAR0tmnHo5wFwwVauarBL_dUZruBnsjZOvlbQDVoqFL_fry5QfqgAU71jvPw
  26. AutoCAD Civil 3D 2010 User's Guide, (2009), Autodesk, http://images.autodesk.com/adsk/files/civil3d_ug.pdf?fbclid=IwAR1k-Im5CB61VP7GpvuNbWZh3Fumhd9ndLgQFSTHYmwAuonzNUIdAz67Lls
  27. Niedbalski, Z., Małkowski, P., & Majcherczyk, T. (2018). Application of the NATM method in the road tunneling works in difficult geological conditions–The Carpathian flysch. Tunnelling and Underground Space Technology, 74, 41–59.
  28. Ye, Z., & Zhang, C. (2020). Influence of Loose Contact between Tunnel Lining and Surrounding Rock on the Safety of the Tunnel Structure. Symmetry, 12(10), 1733.
  29. Kim, Y., & Bruland, A. (2015). A study on the establishment of Tunnel Contour Quality Index considering construction cost. Tunnelling and Underground Space Technology, 50, 218–225.
  30. Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters (ISO 25178–2:2012)
DOI: https://doi.org/10.2478/sgem-2021-0013 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 255 - 269
Submitted on: Mar 26, 2021
Accepted on: May 13, 2021
Published on: Sep 30, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Piotr Dybeł, Katarzyna Dybeł, Jerzy Cieślik, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.