References
- Kim, Y., & Bruland, A. (2019). Analysis and evaluation of tunnel contour quality index. Automation in Construction, 99, 223–237.
- Costamagna, E., Oggeri, C., Segarra, P., Castedo, R., & Navarro, J. (2018). Assessment of contour profile quality in D&B tunnelling. Tunnelling and Underground Space Technology, 75, 67–80.
- Soilán, M., Sánchez-Rodríguez, A., del Río-Barral, P., Perez-Collazo, C., Arias, P., & Riveiro, B. (2019). Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4(4), 58.
- Zogg, H. M., & Ingensand, H. (2008). Terrestrial laser scanning for deformation monitoring: Load tests on the Felsenau Viaduct (CH). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B5), 555–562.
- Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and nurbs modeling for the deformation monitoring of an earth-rock dam. Sensors, 19(1), 22.
- Lenda, G., Siwiec, J., & Kudrys, J. (2020). Multi-Variant TLS and SfM Photogrammetric Measurements Affected by Different Factors for Determining the Surface Shape of a Thin-Walled Dome. Sensors, 20(24), 7095.
- Brazeal, R. (2013). Low cost spherical registration targets for terrestrial laser scanning. SUR 6905-point cloud analysis.
- Bazarnik, M. (2014). The potential of terrestrial 3D laser scanning in inventory and monitoring of tunnel railway (in Polish). Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne.
- Suchocki, C., Damięcka-Suchocka, M., & Katzer, J. 5. Influence of factors on the value of the reflection strength of a laser beam in terrestrial laser scanning (in Polish).
- Lemmens, M. (2011). Terrestrial laser scanning. In Geo-information (pp. 101–121). Springer, Dordrecht.
- Remondino, F. (2003). From point cloud to surface: the modeling and visualization problem. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34.
- Sanchez, T., Conciatori, D., Ben-Ftima, M., & Massicotte, B. (2020). Terrestrial laser scanning for structural inspection with Kriging interpolation. Structure and Infrastructure Engineering, 1–10.
- Wang, W., Zhao, W., Huang, L., Vimarlund, V., & Wang, Z. (2014). Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 1(5), 325–337.
- Xie, X., & Lu, X. (2017). Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning. Underground Space, 2(1), 16–29.
- Yang, Q., Zhang, Z., Liu, X., & Ma, S. (2017). Development of laser scanner for full cross-sectional deformation monitoring of underground gateroads. Sensors, 17(6), 1311.
- Cheng, Y. J., Qiu, W., & Lei, J. (2016). Automatic extraction of tunnel lining cross-sections from terrestrial laser scanning point clouds. Sensors, 16(10), 1648.
- Han, S., Cho, H., Kim, S., Jung, J., & Heo, J. (2013). Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data. Journal of computing in civil engineering, 27(3), 274–281.
- Barla, G., Antolini, F., & Gigli, G. (2016). 3D Laser scanner and thermography for tunnel discontinuity mapping. Geomechanics and Tunnelling, 9(1), 29–36.
- Tan, K., Cheng, X., Ju, Q., & Wu, S. (2016). Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE geoscience and remote sensing letters, 13(11), 1711–1715.
- Živec, T., Anžur, A., & Verbovšek, T. (2019). Determination of rock type and moisture content in flysch using TLS intensity in the Elerji quarry (south-west Slovenia). Bulletin of Engineering Geology and the Environment, 78(3), 1631–1643.
- Pejić, M. (2013). Design and optimisation of laser scanning for tunnels geometry inspection. Tunnelling and underground space technology, 37, 199–206.
- Thiel, K. (1995). Physico-mechanical properties and models of rock massifs of the Polish flysch Carpathians (in Polish). IBW PAN Gdańsk, Biblioteka Naukowa Hydrotechnika, (19).
- Faro Focus Laser Scanners, (2021), FARO, https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners
- SCENE User Manual, (2020), FARO, https://faro.app.box.com/s/uivkgf3jyrxcxn5ofazlohjnadddknhr/file/730718082810
- ReCap Support and learning, (2021), Autodesk, https://knowledge.autodesk.com/support/recap/learn?fbclid=IwAR0tmnHo5wFwwVauarBL_dUZruBnsjZOvlbQDVoqFL_fry5QfqgAU71jvPw
- AutoCAD Civil 3D 2010 User's Guide, (2009), Autodesk, http://images.autodesk.com/adsk/files/civil3d_ug.pdf?fbclid=IwAR1k-Im5CB61VP7GpvuNbWZh3Fumhd9ndLgQFSTHYmwAuonzNUIdAz67Lls
- Niedbalski, Z., Małkowski, P., & Majcherczyk, T. (2018). Application of the NATM method in the road tunneling works in difficult geological conditions–The Carpathian flysch. Tunnelling and Underground Space Technology, 74, 41–59.
- Ye, Z., & Zhang, C. (2020). Influence of Loose Contact between Tunnel Lining and Surrounding Rock on the Safety of the Tunnel Structure. Symmetry, 12(10), 1733.
- Kim, Y., & Bruland, A. (2015). A study on the establishment of Tunnel Contour Quality Index considering construction cost. Tunnelling and Underground Space Technology, 50, 218–225.
- Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters (ISO 25178–2:2012)