Burchart-Korol, D., Krawczyk, P., Czaplicka-Kolarz, K., Smoliński, A. (2016). Eco-efficiency of underground coal gasification (UCG) for electricity production. Fuel, 173(January), 239–246. https://doi.org/10.1016/j.fuel.2016.01.019
Meeting, A., Engineers, C., Francisco, S. (1984). Commercial project planned for underground coal gasification. Chemical and Engineering News, 62(51), 25–27. https://doi.org/10.1021/cen-v062n051.p025
Shafirovich, E., Varma, A. (2009). Underground coal gasification: A brief review of current status. Industrial and Engineering Chemistry Research, 48(17), 7865–7875. https://doi.org/10.1021/ie801569r
Wiatowski, M., Stańczyk, K., Świadrowski, J., Kapusta, K., Cybulski, K., Krause, E., … Smoliński, A. (2012). Semi-technical underground coal gasification (UCG) using the shaft method in Experimental Mine “barbara.” Fuel, 99, 170–179. https://doi.org/10.1016/j.fuel.2012.04.017
Mocek, P., Pieszczek, M., Świadrowski, J., Kapusta, K., Wiatowski, M., Stańczyk, K. (2016). Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland. Energy, 111, 313–321. https://doi.org/10.1016/j.energy.2016.05.087
Bhutto, A. W., Bazmi, A. A., Zahedi, G. (2013). Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion Science, 39(1), 189–214. https://doi.org/10.1016/j.pecs.2012.09.004
Kostúr, K., Laciak, M., Durdan, M. (2018). Some influences of Underground Coal Gasification on the environment. Sustainability (Switzerland). https://doi.org/10.3390/su10051512
Blinderman, M. S., Blinderman, A., Taskaev, A. (2017). What makes a UCG technology ready for commercial application? Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00012-8
Yang, L. (2005). Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification. Numerical Heat Transfer; Part A: Applications, 48(6), 585–606. https://doi.org/10.1080/10407780490508115
Otto, C., Kempka, T. (2015). Thermo-mechanical simulations of rock behavior in underground coal gasification show negligible impact of temperature-dependent parameters on permeability changes. Energies. https://doi.org/10.3390/en8065800
Li, H. zhan, Guo, G. li, Zha, J. feng, Yuan, Y. fei, Zhao, B. chen. (2016). Research on the surface movement rules and prediction method of underground coal gasification. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-015-0809-7
Akbarzadeh Kasani, H., Chalaturnyk, R. J. (2017). Coupled reservoir and geomechanical simulation for a deep underground coal gasification project. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2016.12.002
Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E. C., Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, 277, 1–16. https://doi.org/10.4028/www.scientific.net/SSP.277.1
Strzelecki, T., Bartlewska-Urban, M., Kaźmierczak, A., Overchenko, L., Strzelecki, M., Uciechowska-Grakowicz, A. (2018). Mechanika ośrodków porowatych. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.
Biot, M. A. (1941). Reprinted Series General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886
Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956
Ulm, F.-J., Constantinides, G., Heukamp, F. H. (2004). Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures. https://doi.org/10.1007/BF02481626
Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A. R., Moulding, D. A., Thrasher, A. J., … Charras, G. T. (2013). The cytoplasm of living cells behaves as a poroelastic material. Nature Materials. https://doi.org/10.1038/nmat3517
Berger, L., Bordas, R., Burrowes, K., Grau, V., Tavener, S., Kay, D. (2016). A poroelastic model coupled to a fluid network with applications in lung modelling. International Journal for Numerical Methods in Biomedical Engineering. https://doi.org/10.1002/cnm.2731
Coussy, O. (2007). Revisiting the constitutive equations of unsaturated porous solids using a Lagrangian saturation concept. International Journal for Numerical and Analytical Methods in Geomechanics. https://doi.org/10.1002/nag.613
Gawin, D., Baggio, P., Schrefler, B. A. (1995). Coupled heat, water and gas flow in deformable porous media. International Journal for Numerical Methods in Fluids, 20(8–9), 969–987. https://doi.org/10.1002/fld.1650200817
Bartlewska-Urban, M., Strzelecki, T. (2014). Numerical Calculation of Deformation of Three Dimensional Sample in Triaxial Apparatus Under External Load and Temperature Field. Studia Geotechnica et Mechanica, 35(1), 27–39. https://doi.org/10.2478/sgem-2013-0003
Liu, J., Liang, X., Xue, Y., Yao, K., Fu, Y. (2020). Numerical evaluation on multiphase flow and heat transfer during thermal stimulation enhanced shale gas recovery. Applied Thermal Engineering, 178, 115554. https://doi.org/10.1016/j.applthermaleng.2020.115554
Suárez-arriaga, M. C. (2010). Thermo-poroelasticity in geothermics, formulated in four dimensions La termoporoelasticidad en geotermia, definida en cuatro dimensiones, 23(2), 41–50.
Tran, D., Settari, A., Nghiem, L. (2004). New Iterative Coupling Between a Reservoir Simulator and a Geomechanics Module. SPE Journal. https://doi.org/10.2118/88989-PA
Bary, B., De Morais, M. V. G., Poyet, S., Durand, S. (2012). Simulations of the thermo-hydro-mechanical behaviour of an annular reinforced concrete structure heated up to 200°C. Engineering Structures, 36, 302–315. https://doi.org/10.1016/j.engstruct.2011.12.007
Bartlewska-Urban, M., Zombroń, M., Strzelecki, T. (2016). Numerical analysis of road pavement thermal deformability, based on biot viscoelastic model of porous medium. Studia Geotechnica et Mechanica, 38(1), 15–22. https://doi.org/10.1515/sgem-2016-0002
Lecampion, B. (2013). A macroscopic poromechanical model of cement hydration. European Journal of Environmental and Civil Engineering. https://doi.org/10.1080/19648189.2013.768554
Néron, D., Dureisseix, D. (2008). A computational strategy for thermo-poroelastic structures with a time-space interface coupling. International Journal for Numerical Methods in Engineering. https://doi.org/10.1002/nme.2283
Rosen, M. A., Reddy, B. V., Self, S. J. (2017). Underground coal gasification (UCG) modeling and analysis. Underground Coal Gasification and Combustion. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100313-8.00011-6
Biot, M. A. (1956). Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. The Journal of the Acoustical Society of America. https://doi.org/10.1063/1.1721956
Xue, Y., Teng, T., Dang, F., Ma, Z., Wang, S., Xue, H. (2020). Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model. International Journal of Hydrogen Energy, 45(39), 20240–20249. https://doi.org/10.1016/j.ijhydene.2019.11.146
Uciechowska-Grakowicz, A., Strzelecki, T. (2017). Non-Isothermal Constitutive Relations and Heat Transfer Equations of a Two-Phase Medium. Studia Geotechnica et Mechanica, 39(3), 67–78. https://doi.org/10.1515/sgem-2017-0031
Uciechowska-Grakowicz, A., Strzelecki, T. (2016). Numerical model of heat transfer in three phases of the poroelastic medium. Studia Geotechnica et Mechanica, 38(2), 53–59. https://doi.org/10.1515/sgem-2016-0019
Strzelecki, T. (2006). Równania termokonsolidacji gruntów i skał: Geotechnika i budownictwo specjalne. In XXIX Zimowa Szkoła Mechaniki Górotworu i Geoinzynierii, Kraków Krynica 12–17 marca 2006 (pp. 285–299). wyd. Katedry Geomechaniki, Budownictwa i Geotechniki AGH.
Blachowski, J. (2015). Methodology for assessment of the accessibility of a brown coal deposit with Analytical Hierarchy Process and Weighted Linear Combination. Environmental Earth Sciences, 74(5), 4119–4131. https://doi.org/10.1007/s12665-015-4461-0
Nowak, J., Kudelko, J. (2013). LGOM region as a perspective power energy basin and implementation of innovative lignite development methods. Mineral Economics, 25(2–3), 65–70. https://doi.org/10.1007/s13563-012-0024-y
Blinderman, M. S., Jones, R. M. (2002). The Chinchilla IGCC Project to Date: Underground Coal Gasification and Environment. Gasification Technologies Conference, San Francisco, USA, October 27–30, 14. Retrieved from http://www.lincenergy.com/data/info_sheets/u3-fact.pdf
Yang, L. H. (2008). Model test on Underground Coal Gasification (UCG) with low-pressure fire Seepage push-through. Part I: Test conditions and air fire seepage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 30(17), 1587–1594. https://doi.org/10.1080/15567030802112102