Have a personal or library account? Click to login

The effect of the pre-wetting of expanded clay aggregate on the freeze-thaw resistance of the expanded clay aggregate concrete

Open Access
|Jun 2021

References

  1. Amran, Y. H. M., Farzadnia, N., Ali, A. A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  2. Buth, E.; Ledbetter, W.B. (1967). Research Report 81-3: Aggregate absorption factor as an indicator of the freeze-thaw durability of structural lightweight concrete. Texas: Texas Transportation Institute.
  3. Chandra, S., Aavik, J., & Berntsson, L. (1982). Influence of polymer microparticles on freeze-thaw resistance of structural lightweight aggregate concrete. International Journal of Cement Composites and Lightweight Concrete, 4(2), 111–115. https://doi.org/10.1016/0262-5075(82)90015-x
  4. EN 1990 Eurocode: Basis of structural design. (2002).
  5. Gao, X. F., Lo, Y. T., & Tam, C. M. (2002). Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete. Building and Environment, 37(5), 485–489. https://doi.org/10.1016/s0360-1323(01)00051-8
  6. Haug, A. K., & Fjeld, S. (1996). A floating concrete platform hull made of lightweight aggregate concrete. Engineering Structures, 18(11), 831–836. https://doi.org/10.1016/0141-0296(95)00160-3
  7. Jo, B., Park, S., & Park, J. (2007). Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cement and Concrete Composites, 29(2), 128–135. https://doi.org/10.1016/j.cemconcomp.2006.09.004
  8. Jóźwiak-Niedźwiedzka, D. (2005). Scaling resistance of high performance concretes containing a small portion of pre-wetted lightweight fine aggregate. Cement and Concrete Composites, 27(6), 709–715. https://doi.org/10.1016/j.cemconcomp.2004.11.001
  9. Kockal, N. U., & Ozturan, T. (2011). Durability of lightweight concretes with lightweight fly ash aggregates. Construction and Building Materials, 25(3), 1430–1438. https://doi.org/10.1016/j.conbuildmat.2010.09.022
  10. Kucharczyková, B., Keršner, Z., Pospíchal, O., Misák, P., & Vymazal, T. (2010). Influence of freeze–thaw cycles on fracture parameters values of lightweight concrete. Procedia Engineering, 2(1), 959–966. https://doi.org/10.1016/j.proeng.2010.03.104
  11. Kucharczyková, B., Keršner, Z., Pospíchal, O., Misák, P., Daněk, P., & Schmid, P. (2012). The porous aggregate pre-soaking in relation to the freeze–thaw resistance of lightweight aggregate concrete. Construction and Building Materials, 30, 761–766. https://doi.org/10.1016/j.conbuildmat.2011.12.067
  12. Malaiskiene, J., Skripkiunas, G., Vaiciene, M., & Karpova, E. (2017). The influence of aggregates type on W/C ratio on the strength and other properties of concrete. IOP Conference Series: Material Science and Engineering, 251, 1–6. https://iopscience.iop.org/article/10.1088/1757-899X/251/1/012025.
  13. Mao, J., & Ayuta, K. (2008). Freeze–Thaw Resistance of Lightweight Concrete and Aggregate at Different Freezing Rates. Journal of Materials in Civil Engineering, 20(1), 78–84. https://doi.org/10.1061/(asce)0899-1561(2008)20:1(78)
  14. Neville, A.M. (2011). Properties of concrete (5th ed.). Harlow: Pearson Education Ltd.
  15. Ozguven, A., & Gunduz, L. (2012). Examination of effective parameters for the production of expanded clay aggregate. Cement and Concrete Composites, 34(6), 781–787. https://doi.org/10.1016/j.cemconcomp.2012.02.007
  16. PN-B-06265:2018-10. Concrete. Specification, performance, production and conformity. Domestic supplement of PN-EN 206+A1:2016-12. (in Polish)
  17. Polat, R., Demirboğa, R., Karakoç, M. B., & Türkmen, İ. (2010). The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freeze–thaw cycles. Cold Regions Science and Technology, 60(1), 51–56. https://doi.org/10.1016/j.coldregions.2009.08.010
  18. Pospíchal, O., Kucharczyková, B., Misák, P., & Vymazal, T. (2010). Freeze-thaw resistance of concrete with porous aggregate. Procedia Engineering, 2(1), 521–529. https://doi.org/10.1016/j.proeng.2010.03.056
  19. Rashad, A. M. (2018). Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 170, 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009
  20. Topçu, İ. B., & Işıkdağ, B. (2008). Effect of expanded perlite aggregate on the properties of lightweight concrete. Journal of Materials Processing Technology, 204(1–3), 34–38. https://doi.org/10.1016/j.jmatprotec.2007.10.052
  21. Youm, K.-S., Moon, J., Cho, J.-Y., & Kim, J. J. (2016). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Construction and Building Materials, 114, 517–527. https://doi.org/10.1016/j.conbuildmat.2016.03.165
  22. Amran, Y. H. M., Farzadnia, N., Ali, A. A. A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
DOI: https://doi.org/10.2478/sgem-2020-0011 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 65 - 73
Submitted on: Oct 21, 2020
Accepted on: Nov 19, 2020
Published on: Jun 30, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Michał Piotr Musiał, Filip Grzymski, Tomasz Trapko, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution 4.0 License.