Abdi A., Abbeche K., Athmania D., Bouassida M. (2019) Effective Width Rule in the Analysis of Footing on Reinforced Sand Slope. Studia Geotechnica et Mechanica. Vol. 41, No. 1, 42–55.
Nagy A.C., Moldovan D.-V., Ciotlaus M., Muntean L.E. (2017) Evaluation of Experimental and Numerical Simulation of Triaxial Geogrid Reinforcement on the Strength of Road Structures. Procedia Engineering. 181, 472–479.
Li C., Ashlok J.C., White D.J, Vennapusa P.K.R. (2017) Mechanistic-based comparisons of stabilised base and granular surface layers of low-volume roads. International Journal of Pavement Engineering. Vol. 20, No. 1, 112–124.
Denine S., Della N., Dlawar M. R., Sadok F., Canou J., Dupla J.-C. (2016) Effect of geotextile reinforcement on shear strength of sandy soil. Laboratory study. Studia Geotechnica et Mechanica. Vol. 38, No. 4, 3–13.
Vaitkus A., Šiukščius A., Ramunas V. (2014) Regulations for use of geosynthetics for road embankments and subgrades. The Baltic journal of road and bridge engineering. Vol. 9, No. 2, 88–93.
Recommendations for design and analysis of earth structures using geosynthetic reinforcements – EBGEO, Translation of the 2nd German Edition, Published by the German Geotechnical Society (Deutsche Gesellschaft Für Geotechnik e.V., DGGT), 2011.
Nair A. M., Latha G. M. (2014) Large Diameter Triaxial Tests on Geosynthetic-Reinforced Granular Subbases. Journal of Materials in Civil Engineering. Vol. 27, No. 4.
Sakleshpur V.A., Prezzi M., Salgado R., Siddiki N., Choi Y. S. (2019) Large-Scale Direct Shear Testing of Geogrid-Reinforced Aggregate Base over Weak Subgrade. International Journal of Pavement Engineering. Vol. 20, No. 6, 649–658.
Makkar F.M., Chandrakaran S., Sankar N. (2019) Performance of 3-D geogrid-reinforced sand under direct shear mode. International Journal of Geotechnical Engineering. Vol. 13, No. 3.
Yang K.-H., Nguyen M.D., Yalew W.M., Liu C.-N., and Gupta R. (2016) Behavior of Geotextile-Reinforced Clay in Consolidated-Undrained Tests: Reinterpretation of Porewater Pressure Parameters. Journal of GeoEngineering. Vol. 11, No. 2, 45–57.
Da Costa A., Castro J., Sagaseta C., Cañizal J. (2017) Influence of geotextile encasement in triaxial tests on gravel. Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul 2017.
Amšiejus J., Kačianauskas R., Norkus A., Tumonis L. (2010) Investigation of the sand porosity via oedometer testing. The Baltic Journal of Road and Bridge Engineering. Vol. 5, No 3, 139–147.
Skuodis, Š., Markauskas D., Norkus A., Žaržojus G., Dirgėliene N. (2014) Testing and numerical simulation of Holocene marine sand uniaxial compression at Lithuanian coast. Baltica. Vol. 27, No. 1, 33–44.
ISO 14688-1:2017. Geotechnical Investigation and Testing – Identification and Classification of Soil – part 1: Identification and Description. International Organization for Standardization.
Danesh A., Palassi M., Mirhasemi A.A. (2017) Evaluating the influence of ballast degradation on its shear behaviour. International Journal of Rail Transportation. Vol. 6, No. 3, 145–162.
Sweta K., Hussaini S.K.K. (2018) Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions. Geotextiles and Geomembranes. Vol. 46, No 3, 251–256.
Infante D.J.U., Martinez G.M.A., Arrua P.A., Eberhardt M. (2016) Shear strength behaviour of different geosynthetic reinforced soil structure from direct shear test. International Journal of Geosynthetics and Ground Engineering. Vol. 2, No. 17, 1–17.
Han B., Ling J., Shu X., Gong H., Huang B. (2018) Laboratory investigation of particle size effects on the shear behaviour of aggregate-geogrid interface. Construction and Building Materials. 158, 1015–1025.
Gao G., Meguid M.A. (2018) Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis. Geotextiles and Geomembranes. Vol. 43, No. 6, 685–698.
Vaitkus A., Čygas D., Laurinavičius A. (2010) Use of geosynthetics for the strengthening of road pavement structure in Lithuania. Geosynthetics for a challenging world: 9th International Conference on Geosynthetics, Guaruja, Brazil, 2010, Vol. 3. San Paulo: Brazilian Chapter of the International Geosynthetics Society (IGS-Brazil), 1575–1580.
Peric D., Su S. (2005) Influence of the end friction on the response of triaxial and plane strain clay samples. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, 12–16 September 2005, 571–574.
ISO/TS 17892-9:2004. Geotechnical investigation and testing. Laboratory testing of soil. Part 9: Consolidated triaxial compression tests on water-saturated soils.
Kamel M.A., Chandra S. (2004) Behaviour of subgrade soil reinforced with geogrid. International Journal of Pavement Engineering. Vol. 5, No. 4, 201–209.
Tang H., Zhang X., Ji S. (2017) Discrete element analysis for shear band modes of granular materials in triaxial tests. Particulate Science and Technology. Vol. 35, No. 3, 277–290.
Wang H., Koseki J., Sato T. (2017) p-Constant Condition Applied to Undrained Cyclic Triaxial Test of Unsaturated Soils. Geotechnical Testing Journal. Vol. 40, No. 4, 710–718.
Yang Z.X., Pan K. (2017) Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect. Soil Dynamics and Earthquake Engineering. 92, 68–78.
Medzvieckas J., Dirgeliene N., Skuodis Š. (2017) Stress-strain states differences in specimens during triaxial compression and direct shear tests. Procedia Engineering. Modern Building Materials, Structures and Techniques, MBMST 2016. Amsterdam: Elsevier Ltd. 172 (2017): 739–745.
Strzelecki T., Uciechowska-Grakowicz A., Strzelecki M., Sawicki E., Maniecki Ł. (2018) Numerical 3D simulations of seepage and the seepage stability of the right-bank dam of the Dry Flood Control Reservoir in Racibórz. Studia Geotechnica et Mechanica. Vol. 40, No 1, 11–20.
Brinkgreve R.B.J., AL-Khoury R., Bakker K.J., Bonnier P.G., Brand P.J.W., and Broere W. 2007. PLAXIS 3D Foundation. General Information. Delft University of Technology & PLAXIS bv, The Netherlands.
Iwamoto S., Yamamoto S., Lee S-H., Ito H., Endo, T. 2014. Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer. Materials, 7, 6919–6929.