References
- Ahmad, M. F., Haydar, S., Bhatti, A. A., Bari, A. J. (2014). Application of artificial neural network for the prediction of biosorption capacity of immobilized Bacillus subtilis for the removal of cadmium ions from aqueous solution. Biochemical engineering journal, 84, 83–90.
- Asefpour Vakilian, K., Massah, J. (2018). A portable nitrate biosensing device using electrochemistry and spectroscopy. IEEE Sensors Journal, 18(8), 3080–3089.
- Basak, D., Pal, S., Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203–224.
- Bekdaş, G., Nigdeli, S. M. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures, 33(9), 2716–2723.
- Chey, M. H., Chase, J. G., Mander, J. B., Carr, A. J. (2010). Semi-active tuned mass damper building systems: Application. Earthquake Engineering & Structural Dynamics, 39(1), 69–89.
- Cramér H. (2016). Mathematical Methods of Statistics, vol. 9. Princeton, NJ, USA: Princeton University Press.
- Debbarma R., Debnath D. (2013). Earthquake Response Control of 3-Story Building Structures by Tuned Mass Damper. International Journal of Engineering and Innovative Technology, 2, 187–192.
- Deierlein, G. G., Reinhorn, A. M., Willford, M. R. (2010). Nonlinear structural analysis for seismic design. NEHRP seismic design technical brief, 4, 1–36.
- Farrokhi, F., Rahimi, S. (2017). Probabilistic failure analysis of high steel frames with tuned mass damper. In XI Conference on Steel and Composite Construction, Coimbra, Portugal, 23 and 24 November, 2017, 507–514.
- Giaralis, A., Taflanidis, A. A. (2018). Optimal tuned mass-damper-inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Structural Control and Health Monitoring, 25(2), e2082.
- Guyon, I., Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3, 1157–1182.
- Hashemi, A., Asefpour Vakilian, K., Khazaei, J., Massah, J. (2014). An artificial neural network modeling for force control system of a robotic pruning machine. Journal of Information and Organizational Sciences, 38(1), 35–41.
- Huang, J., Cai, Y., Xu, X. (2007). A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognition Letters, 28(13), 1825–1844.
- Kappos, A. J., Papanikolaou, V. K. (2016). Nonlinear dynamic analysis of masonry buildings and definition of seismic damage states. The Open Construction and Building Technology Journal, 10(1), 192–209.
- Krishnan, S. (2007). Case studies of damage to 19-storey irregular steel moment-frame buildings under near-source ground motion. Earthquake engineering & structural dynamics, 36(7), 861–885.
- Li, H., Huo, L. (2010). Advances in structural control in civil engineering in China. Mathematical Problems in Engineering, 1–23.
- Lin, S. W., Lee, Z. J., Chen, S. C., Tseng, T. Y. (2008). Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied soft computing, 8(4), 1505–1512.
- Liu, H., Li, J., Wong, L. (2002). A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome informatics, 13, 51–60.
- Liu, H., Liu, L., Zhang, H. (2009). Boosting feature selection using information metric for classification. Neurocomputing, 73(1), 295–303.
- Marano, G. C., Greco, R., Chiaia, B. (2010). A comparison between different optimization criteria for tuned mass dampers design. Journal of Sound and Vibration, 329(23), 4880–4890.
- Massah, J., Asefpour Vakilian, K. (2019). An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosystems Engineering, 177, 49–58.
- Michalski, R.S., Carbonell, J. G., Mitchell, T. M. (2013). Machine Learning, An Artificial Intelligence Approach. Berlin, Germany: Springer.
- Mohebbi, M., Shakeri, K., Ghanbarpour, Y., Majzoub, H. (2013). Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. Journal of Vibration and Control, 19(4), 605–625.
- Moustakidis, S. P., Theocharis, J. B. (2010). SVM-FuzCoC: A novel SVM-based feature selection method using a fuzzy complementary criterion. Pattern Recognition, 43(11), 3712–3729.
- Muto, M., Krishnan, S. (2011). Hope for the best, prepare for the worst: Response of tall steel buildings to the shakeout scenario earthquake. Earthquake Spectra, 27(2), 375–398.
- Pozos-Estrada, A., Hong, H. P. (2015). Sensitivity Analysis of the Effectiveness of Tuned Mass Dampers to Reduce the Wind-Induced Torsional Responses. Latin American Journal of Solids and Structures, 12(13), 2520–2538.
- Sadek, F., Mohraz, B., Taylor, A. W., Chung, R. M. (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 26(6), 617–635.
- Soto, M. G., Adeli, H. (2013). Tuned mass dampers. Archives of Computational Methods in Engineering, 20(4), 419–431.
- Sun, X., Liu, Y., Li, J., Zhu, J., Chen, H., Liu, X. (2012). Feature evaluation and selection with cooperative game theory. Pattern recognition, 45(8), 2992–3002.
- Vickery, B. J., Galsworthy, J. K., Gerges, R. (2001). The behaviour of simple non-linear tuned mass dampers. In 6th World Congress of the Council on Tall Buildings and Urban Habitat, Melbourne, Australia.
- Wang, L., Shi, W., Zhou, Y. (2019). Study on self-adjustable variable pendulum tuned mass damper. The Structural Design of Tall and Special Buildings, 28(1), e1561.