Have a personal or library account? Click to login
Modelling the time-dependent behaviour of soft soils Cover

Modelling the time-dependent behaviour of soft soils

Open Access
|Jun 2020

References

  1. den Haan, E.J., Feddema, A. (2013). Deformation and strength of embankments on soft Dutch soil. Geotechnical Engineering, 166, 239–252.
  2. Havel, F. (2004). Creep in soft soils. Ph.D. Dissertation. Norwegian University of Science and Technology, Trondheim.
  3. Akagi, H., Saitoh, J. (1994). Dilatancy characteristics of clayey soil under principal axes rotation. In: Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials 1994, Sapporo.
  4. Akagi, H., Yamamoto, H. (1997). Stress-dilatancy relation of undisturbed clay under principal axes rotation. In: Deformation and Progressive Failure in Geomechanics. Edited by A. Asaoka, T. Adachi, F. Oka. Pergamon, 211–216.
  5. Vermeer, P.A., Leoni, M. (2005). Creep in soft soils. In: W(H) YDOC 2005, Paris.
  6. Liingaard, M., Augustesen, A., Lade, P.V. (2004). Characterization of models for time-dependent behavior of soils. International Journal of Geomechanics, 4, 157–177.
  7. Adachi, T., Oka, F., Mimura, M. (1996). Modeling aspects associated with time dependent behavior of soils, Measuring and modeling time dependent soil behavior. In: Geotechnical Special Publication No. 61. Edited by T.C. Sheahan and V.N. Kaliakin. ASCE, New York, 61–95.
  8. Briaud, J.L., Gibbens, R.M. (1994). Test and prediction results for five large spread footings on sand. In: Proceedings of Spread Footing Prediction Symposium 1994, College Station.
  9. Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., Poulos, H.G. (1977). Stress deformation and strength characteristics. In: Proceedings of the 9th ICSMFE 1977, Tokyo.
  10. Degago, S.A. (2014). Primary consolidation and creep of clays. In: The 2nd CREEP Workshop (CREBS IV) 2014, Delft.
  11. Mesri, G., Kane, T. (2017). Reassessment of isotaches compression concept and isotaches consolidation models. Journal of Geotechnical and Geoenvironmental Engineering, 14, 04017119.
  12. Buisman, K. (1936). Result of long duration settlement tests. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 1936, Delft.
  13. Bjerrum, L. (1967). Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique, 17, 83–118.
  14. Garlanger, J.E. (1972). The consolidation of soils exhibiting creep under constant effective stress. Géotechnique, 22, 71–78.
  15. Mesri, G., Godlewski, P.M. (1977). Time- and stress-compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103, 417–430.
  16. Cudny, M., Vermeer, P.A. (2003). On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework. Computers and Geotechnics, 31, 1–22.
  17. den Haan, E.J. (1994). Stress-independent parameter for primary and secondary compression. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering 1994, New Delhi.
  18. Šuklje, L. (1957). The analysis of the consolidation process by the isotaches method. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering 1957, London.
  19. Mitchell, J.K., Soga, K. (2005). Fundamentals of Soil Behavior. Third Edition. John Wiley & Sons, Hoboken.
  20. Feda, J. (1992). Creep of soils and related phenomena. Developments in geotechnical engineering, vol. 68. Elsevier Science.
  21. Cosenza, P., Korošak, D. (2014). Secondary consolidation of clay as an anomalous diffusion process. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1231–1246.
  22. Navarro, A., Alonso, E.E. (2001). Secondary compression of clays as a local dehydration process. Géotechnique, 51, 859–869.
  23. Roscoe, K.H., Burland, J.B. (1968). On the generalised stress-strain behaviour of „wet” clay. In: Engineering plasticity. Edited by J. Heyman, F. Leckie. Cambridge University Press, Cambridge, UK, 535–609.
  24. Brinkgreve, R.B.J. (1994). Geomaterial models and numerical analysis of softening. Ph.D. Dissertation. Delft University of Technology, Delft.
  25. Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.
  26. ZSoil.PC 2018 User Manual. (2018).
  27. Schanz, T. (1998). Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitation. Stuttgart Universität.
  28. Schanz, T., Vermeer, P.A., Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 281–296.
  29. Niemunis A. (2003). Extended hypoplastic models for soils. Habilitation. Ruhr-University Bochum.
  30. Wang, W.M. (1997). Stationary and Propagative Instabilities in Metals - A Computational Point of View. Ph.D. Dissertation. Delft University of Technology, Delft.
  31. Simo, J.C., Hughes, T.J.R. (1998). Computational Inelasticity. Springer-Verlag, New York.
  32. Heeres, O.M. (2001). Modern strategies for the numerical modeling of the cyclic and transient behavior of soils. Ph.D. Dissertation. Delft University of Technology, Delft.
  33. Winnicki, A., Pearce, C.J., Bićanić, N. (2001). Viscoplastic Hoffman consistency model for concrete. Computers and Structures, 79, 7–19.
  34. Łupieżowiec, M. (2003). Consistent viscoplastic model - conception and experimental verification. In: Proceedings of the 2nd International Young Geotechnical Engineers’ Conference 2003, Mamaia.
  35. Stolle, D.F.E., Bonnier, P.G., Vermeer, P.A. (1997). A soft soil model and experiences with two integration schemes. In: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics 1997, Montreal.
  36. Vermeer, P.A., Neher, H.P. (1999). A soft soil model that accounts for creep. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 249–261.
  37. Brinkgreve, R.B.J. (2004). Time-dependent behaviour of soft soils during embankment construction – a numerical study. In: Numerical Model in Geomechanics, Proceedings of NUMOG IX. Ottawa, Canada.
  38. Boudali, M. (1995). Comportementtridi mensionnelet visqueuxdesargiles naturelles. Ph.D. Dissertation. Universite Laval, Quebec.
  39. Leoni, M., Karstunen, M., Vermeer, P.A. (2008). Anisotropic creep model for soft soils. Géotechnique, 58, 215–226.
  40. Niemunis, A., Grandas-Tavera, C.E. (2009). Anisotropic visco-hypoplasticity. Acta Geotechnica, 4, 293–314.
  41. Sexton, B.G., McCabe, B.A, Karstunen, M., Sivasithamparam, N. (2016). Stone column settlement performance in structured anisotropic clays: the influence of creep. Journal of Rock Mechanics and Geotechnical Engineering, 8, 672–688.
  42. Norton, F.H. (1929). The creep of steel at high temperatures. McGraw Hill, NY.
  43. Leroueil, S., Marques, M. (1996). Importance of strain rate and temperature effects in geotechnical engineering. ASCE Convention, USA.
  44. de Borst, R., Pamin, J. (1996). Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering, 39, 2477–2505.
DOI: https://doi.org/10.2478/sgem-2019-0034 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 97 - 110
Submitted on: Jun 17, 2019
Accepted on: Sep 30, 2019
Published on: Jun 30, 2020
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Katarzyna Staszewska, Marcin Cudny, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.