References
- den Haan, E.J., Feddema, A. (2013). Deformation and strength of embankments on soft Dutch soil. Geotechnical Engineering, 166, 239–252.
- Havel, F. (2004). Creep in soft soils. Ph.D. Dissertation. Norwegian University of Science and Technology, Trondheim.
- Akagi, H., Saitoh, J. (1994). Dilatancy characteristics of clayey soil under principal axes rotation. In: Proceedings of the International Symposium on Pre-failure Deformation Characteristics of Geomaterials 1994, Sapporo.
- Akagi, H., Yamamoto, H. (1997). Stress-dilatancy relation of undisturbed clay under principal axes rotation. In: Deformation and Progressive Failure in Geomechanics. Edited by A. Asaoka, T. Adachi, F. Oka. Pergamon, 211–216.
- Vermeer, P.A., Leoni, M. (2005). Creep in soft soils. In: W(H) YDOC 2005, Paris.
- Liingaard, M., Augustesen, A., Lade, P.V. (2004). Characterization of models for time-dependent behavior of soils. International Journal of Geomechanics, 4, 157–177.
- Adachi, T., Oka, F., Mimura, M. (1996). Modeling aspects associated with time dependent behavior of soils, Measuring and modeling time dependent soil behavior. In: Geotechnical Special Publication No. 61. Edited by T.C. Sheahan and V.N. Kaliakin. ASCE, New York, 61–95.
- Briaud, J.L., Gibbens, R.M. (1994). Test and prediction results for five large spread footings on sand. In: Proceedings of Spread Footing Prediction Symposium 1994, College Station.
- Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., Poulos, H.G. (1977). Stress deformation and strength characteristics. In: Proceedings of the 9th ICSMFE 1977, Tokyo.
- Degago, S.A. (2014). Primary consolidation and creep of clays. In: The 2nd CREEP Workshop (CREBS IV) 2014, Delft.
- Mesri, G., Kane, T. (2017). Reassessment of isotaches compression concept and isotaches consolidation models. Journal of Geotechnical and Geoenvironmental Engineering, 14, 04017119.
- Buisman, K. (1936). Result of long duration settlement tests. In: Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering 1936, Delft.
- Bjerrum, L. (1967). Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique, 17, 83–118.
- Garlanger, J.E. (1972). The consolidation of soils exhibiting creep under constant effective stress. Géotechnique, 22, 71–78.
- Mesri, G., Godlewski, P.M. (1977). Time- and stress-compressibility interrelationship. Journal of the Geotechnical Engineering Division, 103, 417–430.
- Cudny, M., Vermeer, P.A. (2003). On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework. Computers and Geotechnics, 31, 1–22.
- den Haan, E.J. (1994). Stress-independent parameter for primary and secondary compression. In: Proceedings of the 13th International Conference on Soil Mechanics and Foundation Engineering 1994, New Delhi.
- Šuklje, L. (1957). The analysis of the consolidation process by the isotaches method. In: Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering 1957, London.
- Mitchell, J.K., Soga, K. (2005). Fundamentals of Soil Behavior. Third Edition. John Wiley & Sons, Hoboken.
- Feda, J. (1992). Creep of soils and related phenomena. Developments in geotechnical engineering, vol. 68. Elsevier Science.
- Cosenza, P., Korošak, D. (2014). Secondary consolidation of clay as an anomalous diffusion process. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 1231–1246.
- Navarro, A., Alonso, E.E. (2001). Secondary compression of clays as a local dehydration process. Géotechnique, 51, 859–869.
- Roscoe, K.H., Burland, J.B. (1968). On the generalised stress-strain behaviour of „wet” clay. In: Engineering plasticity. Edited by J. Heyman, F. Leckie. Cambridge University Press, Cambridge, UK, 535–609.
- Brinkgreve, R.B.J. (1994). Geomaterial models and numerical analysis of softening. Ph.D. Dissertation. Delft University of Technology, Delft.
- Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.
- ZSoil.PC 2018 User Manual. (2018).
- Schanz, T. (1998). Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitation. Stuttgart Universität.
- Schanz, T., Vermeer, P.A., Bonnier, P.G. (1999). The hardening soil model: Formulation and verification. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 281–296.
- Niemunis A. (2003). Extended hypoplastic models for soils. Habilitation. Ruhr-University Bochum.
- Wang, W.M. (1997). Stationary and Propagative Instabilities in Metals - A Computational Point of View. Ph.D. Dissertation. Delft University of Technology, Delft.
- Simo, J.C., Hughes, T.J.R. (1998). Computational Inelasticity. Springer-Verlag, New York.
- Heeres, O.M. (2001). Modern strategies for the numerical modeling of the cyclic and transient behavior of soils. Ph.D. Dissertation. Delft University of Technology, Delft.
- Winnicki, A., Pearce, C.J., Bićanić, N. (2001). Viscoplastic Hoffman consistency model for concrete. Computers and Structures, 79, 7–19.
- Łupieżowiec, M. (2003). Consistent viscoplastic model - conception and experimental verification. In: Proceedings of the 2nd International Young Geotechnical Engineers’ Conference 2003, Mamaia.
- Stolle, D.F.E., Bonnier, P.G., Vermeer, P.A. (1997). A soft soil model and experiences with two integration schemes. In: Proceedings of the 6th International Symposium on Numerical Models in Geomechanics 1997, Montreal.
- Vermeer, P.A., Neher, H.P. (1999). A soft soil model that accounts for creep. In: Beyond 2000 in Computational Geotechnics. Edited by R.B.J. Brinkgreve, Balkema, Rotterdam, 249–261.
- Brinkgreve, R.B.J. (2004). Time-dependent behaviour of soft soils during embankment construction – a numerical study. In: Numerical Model in Geomechanics, Proceedings of NUMOG IX. Ottawa, Canada.
- Boudali, M. (1995). Comportementtridi mensionnelet visqueuxdesargiles naturelles. Ph.D. Dissertation. Universite Laval, Quebec.
- Leoni, M., Karstunen, M., Vermeer, P.A. (2008). Anisotropic creep model for soft soils. Géotechnique, 58, 215–226.
- Niemunis, A., Grandas-Tavera, C.E. (2009). Anisotropic visco-hypoplasticity. Acta Geotechnica, 4, 293–314.
- Sexton, B.G., McCabe, B.A, Karstunen, M., Sivasithamparam, N. (2016). Stone column settlement performance in structured anisotropic clays: the influence of creep. Journal of Rock Mechanics and Geotechnical Engineering, 8, 672–688.
- Norton, F.H. (1929). The creep of steel at high temperatures. McGraw Hill, NY.
- Leroueil, S., Marques, M. (1996). Importance of strain rate and temperature effects in geotechnical engineering. ASCE Convention, USA.
- de Borst, R., Pamin, J. (1996). Some novel developments in finite element procedures for gradient-dependent plasticity. International Journal for Numerical Methods in Engineering, 39, 2477–2505.