Have a personal or library account? Click to login
Modelling of Rock Joints Interface under Cyclic Loading Cover

Modelling of Rock Joints Interface under Cyclic Loading

Open Access
|Mar 2020

References

  1. Bahaaddini M., Hagan P.C., Mitra R., Khosravi M.H.: Experimental and numerical study of asperity degradation in the direct shear test, Engineering Geology 204 (2016), 41–52
  2. Bahaaddini M., Sharrock G., Hebblewhite B.K.: Numerical direct shear tests to model the shear behaviour of rock joints, Computers and Geotechnics 51 (2013), 101–115
  3. Dafalias Y.F., Popov E.P.: A model of nonlinearly hardening materials for complex loading, Acta Mechanica (1975), 21:173–192
  4. Fathi A., Moradian Z., Rivard P., Ballicy G., Boyd A.J.: Geometric Effect of Asperities on Shear Mechanism of Rock Joints, Rock Mech Rock Eng (2016) 49:801–820, DOI <a href="https://doi.org/10.1007/s00603-015-0799-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00603-015-0799-6</a>
  5. Hashiguchi K.: Constitutive equations of elastoplastic materials with anisotropic hardening and elastic-plastic transition, J. Appl. Mech., ASME (1981) 48:297–301
  6. Hoek E. (ed.): Practical Rock Engineering, 2007
  7. Huang M., Chen Y., Gu X.: Discrete element modeling of soil-structure interface behavior under cyclic loading, Computers and Geotechnics 107 (2019), 14–24
  8. Indraratna B., Thirukumaran S., Brown E.T., Zhu SP.: Modelling the Shear Behaviour of Rock Joints with Asperity Damage Under Constant Normal Stiffness, Rock Mech. Rock Eng. (2015) 48:179–195, DOI <a href="https://doi.org/10.1007/s00603-014-0556-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00603-014-0556-2</a>
  9. Jarzębowski A., Mróz Z.: On slip and memory rules in elastic, friction contact problems, Acta Mechanica, 102, 199–216 (1994)
  10. Kamonphet T., Khamrat S., Fuenkajorn K.: Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures, Songklanakarin J. Sci. Technol. (2015), 37 (6), 683–690
  11. Kou M., Liu X., Tang S., Wang Y.: Experimental study of the prepeak cyclic shear mechanical behaviors of artificial rock joints with multiscale asperities, Soil Dynamics and Earthquake Engineering, 120 (2019) 58–74
  12. Lee H.S., Park Y.J., Cho T.F., You K.H.: Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading, International Journal of Rock Mechanics & Mining Sciences, 38 (2001), 967–980
  13. Li, Y. Oh, J., Mitra, R., Hebblewhite, B.: A joint asperity degradation model based on the wear process, 49th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 28 June–1 July 2015.
  14. Liu Q., Tian Y., Liu D., Jiang Y.: Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description, Engineering Geology 228 (2017), 282–300
  15. Liu X.G., Zhu W.C., Yu Q.L., Chen S.J., Li R.F.: Estimation of the joint roughness coefficient of rock joints by consideration of two-order asperity and its application in double-joint shear tests, Engineering Geology 220 (2017) 243–255
  16. Liu X.R., Kou M.M., Lu Y.M., Liu Y.Q.: An experimental investigation on the shear mechanism of fatigue damage in rock joints under pre-peak cyclic loading condition, International Journal of Fatigue 106 (2018) 175–184
  17. Ma S., Chuan H., Zhao Z., Nie W., Zhu X., Zhang Z.: Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis, Rock Mech Rock Eng (2017), 50:1205–1215, DOI <a href="https://doi.org/10.1007/s00603-016-1158-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00603-016-1158-y</a>
  18. Ma S., He C., Zhao Z., Nie W. Zhu X., Zhang Z.: Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis, Rock Mech Rock Eng. (2017), 50:1205–1215, DOI <a href="https://doi.org/10.1007/s00603-016-1158-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00603-016-1158-y</a>
  19. Maciejewski and Mróz Z.: Deformation response of geomaterial interfaces coupled with progressive damage and wear, 37th Solid Mechanics Conference SolMech 2010, Book of Abstracts, 2010.
  20. Maciejewski J., Jarzębowski A.: Application of kinematically admissible solutions to passive earth pressure problems, International Journal of Geomechanics, 2004, vol. 4 (2), 127–136
  21. Maciejewski J.: Analiza stanów pokrytycznych w procesach urabiania gruntów, rozprawa doktorska, IPPT PAN, Warszawa 1996
  22. Mirzaghorbanali A., Nemcik J., Aziz N.: Effects of Cyclic Loading on the Shear Behaviour of Infilled Rock Joints Under Constant Normal Stiffness Conditions, Rock Mech Rock Eng. (2014) 47:1373–1391
  23. Mróz Z., Maciejewski J.: Post-critical response of soils and shear band evolution, Proc. 3rd Int. Workshop On localization and Bifurcation Theory for Soils and Rocks, Grenoble (Aussois), France, 19–32, 1994
  24. Mróz Z., Norris V.A., Zienkiewicz O.C.: An anisotropic hardening model for soils and its application to cyclic loading, Int. J. for Numerical and Analytical Meth. in Geomech. (1978) 2:203–221
  25. Mróz Z., Pietruszczak S.: A constitutive model for sand with anisotropic hardening rule, Int. J. for Numerical and Analytical Meth. in Geomech. (1983) 7:305–320
  26. Niktabar S.M.M., Rao S.K., Shrivastava A.K.: Effect of rock joint roughness on its cyclic shear behavior, Journal of Rock Mechanics and Geotechnical Engineering, 9 (2017), 1071–1084
  27. Nova R.: A constitutive model for soils under monotonic and cyclic loadings, Soil Mechanics-Transient Cyclic Loads, Eds. Pande G.N. and Zienkiewicz O.C., John Wiley & Sons Inc., 343–373
  28. Oda M.: A mechanical and statistical model of granular material, Soils and Foundations (1974), 14, 1:13–27
  29. Park JW., Song JJ.: Numerical simulation of a direct shear test on a rock joint using a bonded-particle model, International Journal of Rock Mechanics & Mining Sciences 46 (2009), 1315–1328
  30. Roscoe K.H., Burland J.B.: On the generalized stress-strain behavior of ‘wet’ clay, Engineering Plasticity, Eds. Heyman and Leckie F.A., Cambridge Univ. Press, Cambridge, 535–608
  31. Stupkiewicz S., Mróz Z.: Modelling of friction and dilatancy effects at brittle interfaces for monotonic and cyclic loading, Journ. Theoret. Appl. Mech., 39 (2001), 707–739
  32. Tang Z., Liu Q., Xia C., Song Y., Huang J., Wang C.: Mechanical model for predicting closure behavior of rock joints under normal stress. Rock Mech Rock Eng (2014), 47:2287–2298
  33. Xia C, Tang Z, Xiao W, Song Y.: New peak shear strength criterion of rock joints based on quantified surface, Rock Mech. Rock Eng. (2014) 47 :387–400, doi:<a href="https://doi.org/10.1007/s00603-013-0395-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1007/s00603-013-0395-6</a>
  34. Zhang Q., Wu C., Fei X., Jang B.A., Liu D.: Time-dependent behavior of rock joints considering asperity degradation, Journal of Structural Geology 121 (2019), 1–9
  35. Zheng B., Qi S.: A new index to describe joint roughness coefficient (JRC) under cyclic shear, Engineering Geology, 212 (2016), 72–85
DOI: https://doi.org/10.2478/sgem-2019-0030 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 36 - 47
Submitted on: Mar 1, 2019
Accepted on: Sep 2, 2019
Published on: Mar 19, 2020
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Jan Maciejewski, Sebastian Bąk, Paweł Ciężkowski, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.