Amorosi, A., Boldini, D., & Germano, V. (2008). Implicit integration of a mixed isotropic kinematic hardening plasticity model for structured clays. International journal for numerical and analytical methods in geomechanics, 32(10), 1173–1203.
Barla, M. (1999). Tunnels in swelling ground: simulation of 3d stress paths by triaxial laboratory testing (Unpublished doctoral dissertation). Po-litecnico di Torino.
Chen, Y., & Yang, Z. (2017). A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Computers and Geotechnics, 90, 133–143.
Dafalias, Y. F., Manzari, M. T., & Papadimitriou, A. G. (2006). Saniclay: simple anisotropic clay plasticity model. International Journal For Numerical and Analytical Methods In Geomechanics, 30, 1231-1257.
Desai, C., Somasundaram, S., & Frantziskonis, G. (1986). A hierarchical ap-proach for constitutive modelling of geologic materials. International Journal for Numerical and Analytical Methods in Geomechanics, 10(3), 225–257.
Desai, C. S. (1980). A general basis for yield, failure and potential func-tions in plasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 4(4), 361–375.
Einav, I., & Puzrin, A. M. (2004). Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. Journal of Geotechnical and Geoenvironmental engineering, 63(8), 81-92.
Gilelron, N. (2016). Use of the hardening soil model for urban tunnels design. In 25th european young geotechnical engineers conference, sibiu, romania.
Gilleron, N., & Bourgeois, E. (2016). Influence of deviatoric stress depen-dent stiffness on settlement trough width in 2d and 3d finite element modelling of tunnelling. In (p. 567-576).
Houlbsy, G. T., Amorosi, A., & Rojas, E. (2005). Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique, 55(5), 383-392.
Jin, Z. Y., Xu, Q., & Hicher, P. Y. (2017). Estimation of critical state-related formula in advanced constitutive modeling of granular mate-rial. Acta Geotechnica, 12(6), 1329-1351.
Mroz, Z., & Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sands. In Mechanics of engineering materials (John Wiley and Sons ed., p. 415-449).
Serratrice, J. F. (2002). Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du lrpc d’aix en provence. PARAM, 313-326.
Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified structured cam clay: A generalised critical state model for destructured, nat-urally structured and artificially structured clays. Computers and Geotechnics, 37, 956-968.
Tijani, M. (1996). Short description of viplef code. In Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies (Elsevier ed., p. 507-511).
Tijani, M. (2008). Contribution à l’étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salines. Uni-versité Pierre et Marie Curie.
Truty, A., & Obrzud, R. (2015). Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechnica et Mechanica, 37(2), 61–68.
Yu, H. S. (1998). Casm: A unified state parameter model for clay and sand. International Journal For Numerical and Analytical Methods In Geomechanics, 22, 1621-653.
Zytynski, M., Randolph, M. F., & Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2, 87-94.