Have a personal or library account? Click to login

Critical state constitutive models and shear loading of overconsolidated clays with deviatoric hardening

Open Access
|Dec 2019

References

  1. Amorosi, A., Boldini, D., & Germano, V. (2008). Implicit integration of a mixed isotropic kinematic hardening plasticity model for structured clays. International journal for numerical and analytical methods in geomechanics, 32(10), 1173–1203.
  2. Barla, M. (1999). Tunnels in swelling ground: simulation of 3d stress paths by triaxial laboratory testing (Unpublished doctoral dissertation). Po-litecnico di Torino.
  3. Bishop, A. W., & Henkel, D. J. (1957). The measurment of soil properties in the triaxial test. Edward Arnold Publishers.
  4. Chakraborty, T., Salgado, R., & Loukidis, D. (2013). A two-surface plasticity model for clay. Computers and Geotechnics, 49, 170-190.
  5. Chen, J. (2017). A monotonic bounding surface critical state model for clays. Acta Geotechnica, 12, 225-230.
  6. Chen, Y., & Yang, Z. (2017). A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Computers and Geotechnics, 90, 133–143.
  7. Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics Research communications, 13, 341-347.
  8. Dafalias, Y. F. (2016). Must critical state theory be revisited to include fabric effects? Acta Geotechnica, 11, 479-491.
  9. Dafalias, Y. F., Manzari, M. T., & Papadimitriou, A. G. (2006). Saniclay: simple anisotropic clay plasticity model. International Journal For Numerical and Analytical Methods In Geomechanics, 30, 1231-1257.
  10. Dafalias, Y. F., & Taiebat, M. (2013). Anatomy of rotational hardening in clay plasticity. Géotechnique, 63, 1406-1418.
  11. DAO, L. Q. (2015). Etude du comportement anisotrope de l’argile de boom (Unpublished doctoral dissertation). Ecole des Ponts ParisTech.
  12. Desai, C., Somasundaram, S., & Frantziskonis, G. (1986). A hierarchical ap-proach for constitutive modelling of geologic materials. International Journal for Numerical and Analytical Methods in Geomechanics, 10(3), 225–257.
  13. Desai, C. S. (1980). A general basis for yield, failure and potential func-tions in plasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 4(4), 361–375.
  14. Einav, I., & Puzrin, A. M. (2004). Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. Journal of Geotechnical and Geoenvironmental engineering, 63(8), 81-92.
  15. Gasparre, A. (2005). Advanced laboratory characterization of london clay (Unpublished doctoral dissertation). Imperial College London.
  16. Gens, A., & Potts, D. M. (1988). Critical state models in computational geomechanics. Engineering Computation, 5, 178-197.
  17. Gilelron, N. (2016). Use of the hardening soil model for urban tunnels design. In 25th european young geotechnical engineers conference, sibiu, romania.
  18. Gilleron, N., & Bourgeois, E. (2016). Influence of deviatoric stress depen-dent stiffness on settlement trough width in 2d and 3d finite element modelling of tunnelling. In (p. 567-576).
  19. Hattab, M., & Hicher, P.-Y. (2004). Dilating behaviour of overconsolidated clay. Soils and Foundations, 44(4), 27–40.
  20. Hong, P. Y., Pereira, J. M., Tang, A. M., & Cui, Y. J. (2016). A two-surface plasticity model for stiff clay. Acta Geotechnica, 11, 871-885.
  21. Houlbsy, G. T., Amorosi, A., & Rojas, E. (2005). Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique, 55(5), 383-392.
  22. Jin, Z. Y., Xu, Q., & Hicher, P. Y. (2017). Estimation of critical state-related formula in advanced constitutive modeling of granular mate-rial. Acta Geotechnica, 12(6), 1329-1351.
  23. Lagioia, R., & Potts, D. M. (1988). A new versatile expression for yield and plastic potential surfaces. Computers and Geotechnics, 5, 178-197.
  24. Liu, M., & Carter, J. (2002). A structured cam clay model. Canadian Geotechnical Journal, 39, 1313-1332.
  25. Mair, R. J. (1979). Centrifugal modelling of tunnel construction in sof clay (Unpublished doctoral dissertation). Cambridge University.
  26. Mroz, Z., & Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sands. In Mechanics of engineering materials (John Wiley and Sons ed., p. 415-449).
  27. Obrzud, F. (2010). On the use of the hardening soil small strain model in geotechnical practice. Numerics in Geotechnics and Structures.
  28. Panet, M. (1995). Calcul des tunnels par la méthode convergence-confinement. Presses de l’Ecole Nationale des Ponts et Chaussées.
  29. Potts, D. M., & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering : theory. Thomas Telford.
  30. Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behevior of wet clay. Cambridge University Press.
  31. Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8, 22-52.
  32. Schanz, T., & Vermeer, P. (2000). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics.
  33. Schofield, A., & Wroth, P. (1968). Critical state soil mechanics (Vol. 310). McGraw-Hill London.
  34. Serratrice, J. F. (2002). Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du lrpc d’aix en provence. PARAM, 313-326.
  35. Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified structured cam clay: A generalised critical state model for destructured, nat-urally structured and artificially structured clays. Computers and Geotechnics, 37, 956-968.
  36. Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2011). A critical state soil model for overconsolidated clays. Computers and Geotechnics, 38, 648-658.
  37. Sultan, N., Cui, Y.-J., & Delage, P. (2010). Yielding and plastic behaviour of boom clay. Géotechnique, 60(9), 657-666.
  38. Tijani, M. (1996). Short description of viplef code. In Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies (Elsevier ed., p. 507-511).
  39. Tijani, M. (2008). Contribution à l’étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salines. Uni-versité Pierre et Marie Curie.
  40. Truty, A., & Obrzud, R. (2015). Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechnica et Mechanica, 37(2), 61–68.
  41. Wood, D. M. (2003). Geotechnical modelling. CRC Press.
  42. Yu, H. S. (1998). Casm: A unified state parameter model for clay and sand. International Journal For Numerical and Analytical Methods In Geomechanics, 22, 1621-653.
  43. Yu, H. S. (2006). Plasticity and geotechnics. Springer.
  44. Zytynski, M., Randolph, M. F., & Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2, 87-94.
DOI: https://doi.org/10.2478/sgem-2019-0024 | Journal eISSN: 2083-831X | Journal ISSN: 0137-6365
Language: English
Page range: 247 - 262
Submitted on: May 20, 2019
Accepted on: Jul 11, 2019
Published on: Dec 30, 2019
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Sara Rachdi, Emad Jahangir, Michel Tijani, Jean-François Serratrice, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.