References
- Aingaran, S. (2014). Experimental investigation of static and cyclic behaviour of scaled railway ballast and the effect of stress reversal. Ph.D. Thesis. Faculty of Engineering and Environment, University of Southampton.
- Trinh, V.N., Tang, A.M., Cui, Y.-J., Dupla, J.-C., Canon, I., Calon, N., et al. (2012). Mechanical characterization of the fouled ballast in ancient railway track substructure by large-scale triaxial tests. Soils and Foundations, 52(3), 511-523.
- Indraratna, B., Ionescu, D., Christie, H.D. (1998). Shear behaviour of railway ballast based on large-scale triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 124, 439-450.
- Indraratna, B., Salim, W. (2001). Shear strength and degradation characteristics of railway ballast. In: Proceeding of 14th Southeast Asian Geotechnical Conference, Hong Kong, Balkema, Vol. 1, pp. 521-526.
- Werkmeister, S., Numrich, R., Dawson, A.R., Wellner, F. (2003). Design of granular pavement layers considering climatic conditions. Transportation Research Record, 1837, 61-70.
- Ekblad, J. (2006). Influence of water on coarse granular road material properties. Road Materials and Pavement Design, 7(3), 369-404.
- Szypcio, Z. (2016). Stress-dilatancy for soils. Part I: The frictional state theory. Studia Geotechnica et Mechanica, 38(4), 51-57.
- Szypcio, Z. (2016). Stress-dilatancy for soils. Part II: Experimental validation for triaxial tests. Studia Geotechnica et Mechanica, 38(4), 59-65.
- Indraratna, B., Salim, W. (2005). Mechanics of Ballasted Rail Tracks: A Geotechnical Perspective. Taylor & Francis Group, London.
- Dołżyk-Szypcio, K. (2018). Stress-dilatancy for crushed latite basalt. Studia Geotechnica et Mechanica, 40(1), 6-10.
- Coop, M.R., Willson, S.M. (2003). Behaviour of hydrocarbon reservoir sands and sandstones. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 129(11), 1010-1019.