References
- [1] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J.W., Milewski, J. O., Beese, A. M., Wilson-Heid, A., De, A., Zhang, W. “Additive manufacturing of metallic components – Process, structure and properties”, Progress in Materials Science 92, pp. 112 – 224, 2018. DOI: 10.1016/j.pmatsci.2017.10.001
- [2] Magerramova, L., Volkov, M., Svinareva, M., Siversky, A. “The use of additive technologies to create lightweight parts for gas turbine engine compressors”, In: Proceedings of ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition GT2018, Oslo, Norway, pp. 1 – 7, 2018.
- [3] Hae-Sung, Y., Jang-Yeob, L., Hyung-Soo, K., Min-Soo, K., Eun-Seob, K., Yong-Jun, S., Won-Shik, Ch., Sung-Hoon, A. “A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes: Review and Case Study”, International Journal of Precision Engineering and Manufacturing-Green Technology 1 (3), pp. 261 – 279, 2014. DOI: 10.1007/s40684-014-0033-0
- [4] Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., Martina, F. “Design for Additive Manufacturing: Trends, Opportunities, Considerations and Constraints”, CIRP Annals – Manufacturing Technology 65 (2), pp. 737 – 760, 2016. DOI: 10.1016/j.cirp.2016.05.004
- [5] Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C. “Additive manufacturing of metals”, Acta Materialia 117, pp. 371 – 392, 2016. DOI: 10.1016/j.actamat.2016.07.019
- [6] Castro e Costa, E., Pinto Duarte, J., Bártolo, P. “A review of additive manufacturing for ceramic production”, Rapid Prototyping Journal, 23/5, pp. 954 – 963, 2017. DOI: 10.1108/RPJ-09-2015-0128
- [7] Tuominen, J., Kaubisch, M., Thieme, S., Nakki, J., Nowotny, S., Vuoristo, P. “Laser strip cladding for large area metal deposition”, Additive Manufacturing 27, pp. 208 – 216, 2019. DOI: 10.1016/j.addma.2019.01.008
- [8] Handrik M., Vaško M., Majko J., Sága M., Dorčiak F. “Influence of the Shape of the Test Specimen Produced by 3D Printing on the Stress Distribution in the Matrix and in Long Reinforcing Fibers”, Strojnícky časopis – Journal of Mechanical Engineering 69 (3), pp. 61 – 68, 2019. DOI: 10.2478/scjme-2019-0030
- [9] Dimić A., Mišković Ž., Mitrović R., Ristivojević M., Stamenić Z., Danko J., Bucha J., Milesich T. “The Influence of Material on the Operational Characteristics of Spur Gears Manufactured by the 3D Printing Technology”, Strojnícky časopis – Journal of Mechanical Engineering 68 (3), pp. 261 – 270, 2018. DOI: 10.2478/scjme-2018-0039
- [10] ASTM F2792-12. “Standard Terminology for Additive Manufacturing Technologies”, 2012.
- [11] Murr, L. E., Gaytan, S. M., Ramirez, D. A., Martinez, E., Hernandez, J., Amato, K. N., Shindo, P. W., Medina, F. R., Wicker, R. B. “Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies”, Journal of Material Science Technology 28 (1), pp. 1 – 14, 2012.
- [12] Schmidt, M., Merklein, M., Bourell, D., Dimitrov, D., Hausotte, T., Wegener, K., Overmeyer, L., Vollertsen, F., Levy, G. N. “Laser based additive manufacturing in industry and academia”, CIRP Annals - Manufacturing Technology 66, pp. 561 – 583, 2017. DOI: 10.1016/j.cirp.2017.05.011
- [13] Lei Y., Yitao Ch., Frank L. “Additive manufacturing of functionally graded metallic materials using laser metal deposition”, Additive Manufacturing 31, pp. 1 – 11, 2020. DOI: 10.1016/j.addma.2019.100901
- [14] Kruth, J. P., Wang, X., Laoui, T., Froyen, L. “Lasers and materials in selective laser sintering”, Assembly Automation 23 (4), pp. 357 – 371, 2003. DOI: 10.1108/01445150310698652
- [15] “Velcome to SLM Solutions”. [online] Available at: www.slm-solutions.com [Accessed: 14-12-2021].
- [16] Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., Sing, S. L. “Review of selective laser melting: Materials and applications”, Applied Physics Reviews 2, 041101, 2015. DOI: 10.1063/1.4935926
- [17] Atwood, C., Griffith, M., Harwell, L., Schlienger E., Ensz M., Smugeresky J., Romero T., Greene D., Reckaway D. “Laser engineered net shaping (LENS™): A tool for direct fabrication of metal parts”. In: 17th International Congress on Applications of Lasers and Elector-Optics; Orlando, USA, 1998. DOI: 10.2351/1.5059147
- [18] Akbari, M., Kovacevic, R. “An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system”, Additive Manufacturing 23, pp. 487 – 497, 2018. DOI: 10.1016/j.addma.2018.08.031
- [19] Elif Karayel, K., Yahya Bozkurtb, Y. “Additive manufacturing method and different welding applications”, Journal of Materials Research and Technology 9 (5), pp. 11424 – 11438, 2020. DOI: 10.1016/j.jmrt.2020.08.039
- [20] Zhanga, K., Liua, W., Shanga, X. “Research on the processing experiments of laser metal deposition shaping”, Optics & Laser Technology 39, pp. 549 – 557, 2007. DOI: 10.1016/j.optlastec.2005.10.009
- [21] de Oliveira, U., Ocelík, V., De Hosson, J. Th. M. “Analysis of coaxial laser cladding processing conditions”, Surface & Coatings Technology 197, pp. 127 – 136, 2005. DOI: 10.1016/j.surfcoat.2004.06.029
- [22] Arnold, J., Volz, R. “Laser Powder Technology for Cladding and Welding”, Journal of Thermal Spray Technology 8 (2), pp. 243 – 248, 1999.
- [23] Zhenglong, L., Kezhao, Z., Heng, Z., Longchang, N., Yanbin, Ch. “A comparative study of microstructure and tensile properties of Ti2AlNbjoints prepared by laser welding and laser-additive welding with theaddition offiller powder”. Journal of Materials Processing Technology 255, pp. 477 – 487, 2018. DOI: 10.1016/j.jmatprotec.2017.12.044
- [24] Caiazzo, F., Alfieri, V. “Optimization of laser beam welding of steel parts made by additive manufacturing”, The International Journal of Advanced Manufacturing Technology 114, pp. 3123 – 3136, 2021. DOI: 10.1007/s00170-021-07039-w
- [25] Danielewski, H., Antoszewski, B. “Properties of Laser Additive Deposited Metallic”, Open Engineering 10, pp. 484 – 490, 2020. DOI: 10.1515/eng-2020-0046
- [26] Geng, Y., Konovalov, S. V., Chen, X. “Research Status and Application of the High-Entropy and Traditional Alloys Fabricated via the Laser Cladding “, Progress in Physics of Metals 21 (1), pp. 26 – 45, 2020. DOI: 10.15407/ufm.21.01.026
- [27] Mahamood, R. M. “Laser metal deposition process of metals, alloys, and composite materials”, Springer, Cham, Switzerland, 2018. DOI: 10.1007/978-3-319-64985-6
- [28] Kai, Z., Shijie, W., Weijun, L., Xiaofeng, S. “Characterization of stainless steel parts by Laser Metal Deposition”, Materials and Design 55, pp. 104 – 119, 2014. DOI: 10.1016/j.matdes.2013.09.006
- [29] Awd, M., Tenkamp, J., Hirtler, M., Siddique, S., Bambach, M, Walther, F. “Comparison of Microstructure and Mechanical Properties of Scalmalloy® Produced by Selective Laser Melting and Laser Metal Deposition”, Materials 11 (1), pp. 1 – 17, 2018. DOI: 10.3390/ma11010017
- [30] Chor, Y. Y., Hongyi, K. T., Zhenglin, D., Chee, K. Ch. “Selective laser melting of nickel powder”, Rapid Prototyping Journal 23(4), pp. 750 – 757, 2017. DOI: 10.1108/RPJ-01-2016-0006
- [31] Babu, S. S., Raghavan, N., Raplee, J., Foster, S. J., Frederick, C., Haines, M., Dinwiddie, R., Kirka, M. K., Plotkowski, A., Lee, Y., Dehoff, R. R. “Additive Manufacturing of Nickel Superalloys: Opportunities for Innovation and Challenges Related to Qualification”, Metallurgical and Materials Transactions A 49A, pp. 3764 – 3780, 2018. DOI: 10.1007/s11661-018-4702-4
- [32] Liang, Y. J., Cheng X., Li J., Wang, H. M. “Microstructural control during laser additive manufacturing of single-crystalnickel-base superalloys: New processing– microstructure maps involving powder feeding”, Materials & Design 130, pp. 197 – 207, 2017. DOI: 10.1016/j.matdes.2017.05.066
- [33] Shishkovsky, I., Kakovkina, N., Sherbakof, V. “Mechanical properties of NiCrBSi self-fluxing alloy after LPBF with additional heating”, Procedia CIRP 94, pp. 217 – 221, 2020. DOI: 10.1016/j.procir.2020.09.041
- [34] Hu, D., Liu, Y., Chen, H., Liu, J., Wang, M., Deng, L. “Microstructure and properties of Ta-reinforced NiCuBSi + WC composite coating deposited on 5Cr5MoSiV1 steel substrate by laser cladding”, Optics & Laser Technology 142, 107210, pp. 1 – 10, 2021. DOI: 10.1016/j.optlastec.2021.107210
- [35] Karimi, M. R., Salimijazi, H. R., Golozar, M. A. “Effects of remelting processes on porosity of NiCrBSi flame sprayed coatings”, Surface Engineering 32 (3), pp. 238 – 243, 2015. DOI: 10.1179/1743294415Y.0000000107
- [36] Vencl, A., Katavić, B., Marković, D., Ristić, M., Gligorijević, B. “The Tribological Performance of Hardfaced Thermal Sprayed Coatings”, Tribology in Industry 37 (3), pp. 320 – 329, 2015.
- [37] Iždinská, Z., Nasher, A., Iždinský, K. “The Structure and Mechanical Properties of NiCrBSi Coatings Prepared by Laser beam Cladding”, Materials Engineering 17 (1), pp. 11 – 16, 2010.
- [38] “Kovové prášky”. [online] http://www.vuz.sk/uploads/wysiwyg/katal%C3%B3gy/10_Kovove_prasky.pdf [Accessed: 15-12-2021].
- [39] Caron, J. L., Sowards, J. W. “6.09 - Weldability of Nickel-Base Alloys”, In: Hashmi S., Van Tyne Ch. J., Gilmar G. F., Yilbas B. Comprehensive Materials Processing 6: Welding and Bonding technologies. 1st edition, Elsevier, pp. 50 – 75, 2014. DOI: 10.1016/B978-0-08-096532-1.00615-4