Have a personal or library account? Click to login
A Study on the ‘Compatiblity Assumption’ of Contemporary Multiplicative Plasicity Models Cover

A Study on the ‘Compatiblity Assumption’ of Contemporary Multiplicative Plasicity Models

Open Access
|Jun 2019

References

  1. [1] Simo JC, Hughes TJR. “Computational Inelasticity”, New York: Springer, 2000. ISBN-10: 0387975209
  2. [2] De Souza Neto, EA, Perić D, Owen DRJ. “Computational Methods for Plasticity: Theory and Applications”, 1st ed. Singapore: Wiley; 2008. ISBN-10: 0470694521
  3. [3] Nemat-Nasser S. “Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials”, Cambridge: Cambridge University Press, 2004. ISBN-10: 0521108063
  4. [4] Asaro RJ. “Micromechanics of crystals and polycrystals”, In: John W. Hutchinson, Theodore Y. Wu, editors. Advances in Applied Mechanics. Vol 23. New York: Academic Press; pp. 1 – 115, 1983. ISBN-10: 0120020238
  5. [5] Peirce D, Asaro RJ, Needlemann A. “An analysis of nonuniform and localized deformation in ductile single crystals”, Acta Metall. 30, pp. 1087 – 1119, 1982. DOI: 10.1016/0001-6160(82)90005-0
  6. [6] Peirce D. “Shear band bifurcation in ductile single crystals” J Mech Phys Solids. 31, pp. 133 – 153, 1983. DOI: 10.1016/0022-5096(83)90047-9
  7. [7] Spencer AJM. “Continuum Mechanics”, 1st ed. New York: Longman, 2012. ISBN-10: 0486435946
  8. [8] Bonet J, Wood RD. “Nonlinear Continuum Mechanics for Finite Element Analysis”, 2nd ed. Cambridge: Cambridge University Press, 2008. ISBN-10: 0521838703
  9. [9] Holzapfel GA. “Nonlinear Solid Mechanics. A continuum approach for engineering”, Chichester: Wiley, 2001. ISBN-10: 0471823198
  10. [10] Écsi L, Élesztős P. “An alternative material model using a generalized J2 finite-strain flow plasticity theory with isotropic hardening”, Int J Appl Mech Engrg. 23 (2), 351–365, 2018. DOI: 10.2478/ijame-2018-0019
  11. [11] Écsi L, Élesztős P. “An Alternative Method for Modelling the Degradation of Hyperelastic Materials within the Framework of Finite-strain Elastoplasticity”, In: Engineering Design Applications II, Structures, Materials and Processes, Springer, 2019. In press, ISBN- 978-3-030-20800-4
  12. [12] Écsi L, Élesztős P, Jerábek R, Jančo R, Hučko B. “An Alternative Framework for Developing Material Models for Finite-Strain Elastoplasticity”, In: Metal Matrix Composites, IntechOpen, 2019. In press, DOI: 10.5772/intechopen.85112
  13. [13] Barber JR. “Elasticity”, 2nd ed. New York: Kluwer Academic Publishers, 2004. ISBN-1-4020-0966-6
  14. [14] Slaughter WS. “The Linearized Theory of Elasticity”, New York: Springer, 2002. ISBN- 978-1-4612-6608-2
  15. [15] Radok JRM. “Some Basic Problems Of The Mathematical Theory of Elasticity. Fundamental equations, plane theory of elasticity, torsion and bending”, Eddied by Muskhelshvli NI. Dordrecht: Springer, 1977. ISBN- 978-90-481-8245-9
  16. [16] Lubliner J. “Plasticity Theory” 2nd ed. Berkeley: Pearson Education Inc., 2006. ISBN-10: 0486462900
  17. [17] Blume JA. “Compatibility conditions for a left Cauchy-Green strain field”, Journal of Elasticity 21, pp. 271 – 308, 1989.
  18. [18] Acharya A. “On compatibility conditions for the left Cauchy-Green deformation field in three dimensions”, Journal of Elasticity 56, pp. 95 – 105, 1999.
  19. [19] Amrouche C, Ciarlet PG, Grate L, Kesavan S. “On Saint Venant’s compatibility conditions and Poincaré’s lemma”, In: Mathematical Problems in Mechanics. C. R. Acad. Sci. Paris 342, Ser. I, pp. 887 – 891, 2006.
  20. [20] Schäfer HN, Schmidt JP. “Tensor Analysis and Elementary Differential Geometry for Physicists and Engineers”, Heidelberg: Springer, 2014. ISBN- 978-3-662-43443-7.
  21. [21] Continuum mechanics/Curl of a gradient of a vector. On official website of Wikiversity, https://en.wikiversity.org/wiki/Continuum_mechanics/Curl_of_a_gradient_of_a_vector, accessed May 16 2019.
  22. [22] Schey HM. “Div, grad, curl and all that”, An informal text on vector calculus. 3nd ed. NY: Norton & Company, 1997. ISBN-0-393-96997-5.
  23. [23] Jančo, R. “Solution of the thermo-elastic-plastic problems with consistent integration of constitutive equation”, Strojnícky časopis – Journal of Mechanical Engineering 53 (4), pp. 197 – 214, 2002.
  24. [24] Halama, R., Markopoulus, A., Jančo, R, Bartecký, M. “Implementation of MAKOC cyclic plasticity model with memory“, Advanced in Engineering Software 113, pp. 34 – 46, 2017. DOI: 10.1016/j.advengsoft.2016.10.009
DOI: https://doi.org/10.2478/scjme-2019-0015 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 15 - 26
Published on: Jun 28, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Écsi Ladislav, Jerábek Róbert, Élesztős Pavel, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.