Have a personal or library account? Click to login
Estimation of Material Properties of Carbon Nanotubes Using Finite Element Method Cover

Estimation of Material Properties of Carbon Nanotubes Using Finite Element Method

Open Access
|Jun 2019

References

  1. [1] Bocko, J., Lengvarský, P., Šarloši, J. “Buckling Analysis of Hetero-Junction Carbon Nanotubes”, Strojnícky časopis – Journal of Mechanical Engineering 68 (2), pp. 9 – 16, 2018. DOI: https://doi.org/10.2478/scjme-2018-0013
  2. [2] Cornwell, C. F., Wille, L. T. “Elastic properties of single-walled carbon nanotubes in compression”, Solid State Communications 101 (8), pp. 555 – 558, 1997. DOI: https://doi.org/10.1016/S0038-1098(96)00742-9
  3. [3] Ghorbanpour Arani, A., Rahmani, R., Arefmanesh, A. “Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software”, Physica E: Low-Dimensional Systems and Nanostructures 40 (7), pp. 2390 – 2395, 2008. DOI: https://doi.org/10.1016/j.physe.2007.11.011
  4. [4] Giannopoulos, G. I., Kakavas, P. A., Anifantis, N. K. “Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach”, Computational Materials Science 41 (4), 561 – 569, 2008. DOI: https://doi.org/10.1016/j.commatsci.2007.05.016
  5. [5] He, X. Q., Kitipornchai, S., Liew, K. M. “Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction”, Journal of the Mechanics and Physics of Solids 53 (2), pp. 303 – 326, 2005. DOI: https://doi.org/10.1016/j.jmps.2004.08.003
  6. [6] Hernandez, E., Goze, C., Bernier, P., Rubio, A. “Elastic Properties of C and BxCyNz Composite Nanotubes”, Physical Review Letters 80 (20), pp. 4502 – 4505, 1998. DOI: https://doi.org/10.1103/PhysRevLett.80.4502
  7. [7] Iijima, S. “Helical microtubules of graphitic carbon” Nature 354 (6348), pp. 56–58. 1991. DOI: https://doi.org/10.1038/354056a0
  8. [8] Kudin, K. N., Scuseria, G. E., Yakobson, B. I. “C2F, BN, and C nanoshell elasticity from ab initio computations”, Physical Review B 64 (23), 235406, 2001. DOI: https://doi.org/10.1103/PhysRevB.64.235406
  9. [9] Lalit, R., Mayank, P., Ankur, K. “Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material”, Strojnícky časopis – Journal of Mechanical Engineering 68 (1), pp. 33 – 50, 2018. DOI: https://doi.org/10.2478/scjme-2018-0004
  10. [10] Li, C., & Chou, T.-W. “A structural mechanics approach for the analysis of carbon nanotubes”, International Journal of Solids and Structures 40 (10), pp. 2487 – 2499, 2003. DOI: https://doi.org/10.1016/S0020-7683(03)00056-8
  11. [11] Liew, K. M., Wong, C. H., He, X. Q., Tan, M. J., Meguid, S. A. “Nanomechanics of single and multiwalled carbon nanotubes”, Physical Review B 69 (11), 115429, 2004. DOI: https://doi.org/10.1103/PhysRevB.69.115429
  12. [12] Lu, J. P. “Elastic properties of carbon nanotubes and nanoropes”, Physical Review Letters 79 (7), pp. 1297 – 1300, 1997. DOI: https://doi.org/10.1103/PhysRevLett.79.1297
  13. [13] Majid, J., Mohammad Reza, M. “Investigation of Defect Effects on Adhesively Bonded Joint Strength Using Cohesive Zone Modeling”, Strojnícky časopis – Journal of Mechanical Engineering 68 (3), pp. 5 – 24, 2018. DOI: 10.2478/scjme-2018-0023
  14. [14] Meo, M., Rossi, M. “Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling”, Composites Science and Technology 66 (11), pp. 1597 – 1605, 2006. DOI: 10.1016/j.compscitech.2005.11.015
  15. [15] Pantano, A., M. Parks, D., Boyce, M. C. “Mechanics of deformation of single- and multi-wall carbon nanotubes”, Journal of the Mechanics and Physics of Solids 52 (4), pp. 789 – 821. (2004). DOI: https://doi.org/10.1016/j.jmps.2003.08.004
  16. [16] Papanikos, P., Nikolopoulos, D. D., & Tserpes, K. I. (2008). Equivalent beams for carbon nanotubes. Computational Materials Science, 43(2), 345–352. https://doi.org/10.1016/j.commatsci.2007.12.010
  17. [17] Pleskachevsky, Y., Shimanovsky, A. Kuziomkina, H. “Finite-element modeling of the interaction of reinforcement with concrete matrix”, Mechanics of Composite Materials – 44 (3), pp. 209 – 214, 2008. DOI: https://doi.org/10.1007/s11029-008-9013-1.
  18. [18] Sanchez-Portal, D., Artacho, E., Soler, J. M., Rubio, A., Ordejon, P. “Ab-initio structural, elastic, and vibrational properties of carbon nanotubes”, Physical Review B 59 (19), 12678–12688, 1999. DOI: https://doi.org/10.1103/PhysRevB.59.12678
  19. [19] Sears, A., & Batra, R. C. (2006). Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 73(8), 085410. https://doi.org/10.1103/PhysRevB.73.085410
  20. [20] Tserpes, K. I., Papanikos, P. “Finite element modeling of single-walled carbon nanotubes”, Composites Part B: Engineering 36 (5), pp. 468–477. 2005. DOI: https://doi.org/10.1016/j.compositesb.2004.10.003
  21. [21] Xin, Z., Jianjun, Z., Zhong-can, O.-Y. “Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory”, Physical Review B 62 (20), pp. 13692 – 13696, 2000. DOI: https://doi.org/10.1103/PhysRevB.62.13692
  22. [22] Yakobson, B. I., Campbell, M. P., Brabec, C. J., Bernholc, J. “High strain rate fracture and C-chain unraveling in carbon nanotubes”, Computational Materials Science 8 (4), pp. 341–348, 1997. DOI: https://doi.org/10.1016/S0927-0256(97)00047-5
  23. [23] Yao, X., Han, Q., Xin, H. “Bending buckling behaviors of single- and multi-walled carbon nanotubes”, Computational Materials Science 43 (4), pp. 579 – 590, 2008. DOI: https://doi.org/10.1016/j.commatsci.2007.12.019
DOI: https://doi.org/10.2478/scjme-2019-0014 | Journal eISSN: 2450-5471 | Journal ISSN: 0039-2472
Language: English
Page range: 7 - 14
Published on: Jun 28, 2019
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Bocko Jozef, Lengvarský Pavol, Pástor Miroslav, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.