References
- Bishop CM. Pattern Recognition and Machine Learning. Springer Science: Singapore, 2006.
- Khan S, Al Masum A, Islam MM, Drew MGB, Bauzá A, Frontera A, et al. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 2nd Edition | Pearson. 2017.
- Russell SJ, Norvig P. IA - A Modern Approach. 2011.
- Zadeh LA. Fuzzy sets. Inf Control 1965; 8:338–353.
- Almaged M, Mahmood A, Hudhaifa Y, Alnema S, Author C. Design of an Integral Fuzzy Logic Controller for a Variable-Speed Wind Turbine Model. J Robot Control 2023; 4(6):762–768.
- Cristianini N, Schölkopf B. Support vector machines and kernel methods: The new generation of learning machines. In: AI Magazine. 2002: 31–41.
- Awad M. KR. Support Vector Machines for Classification. In: Efficient Learning Machines. Apress, Berkeley, CA, 2015.
- Zermane A, Mohd Tohir MZ, Zermane H, Baharudin MR, Mohamed Yusoff H. Predicting fatal fall from heights accidents using random forest classification machine learning model. Saf Sci 2023; 159(November 2022):106023.
- Zermane H, Madjour H, Ziar A, Zermane A. Forecasting material quantity using machine learning and times series techniques. 2024; 75(3):237–248.
- Furizal, Maarif A, Rifaldi D. Application of Machine Learning in Healthcare and Medicine: A Review. J Robot Control 2023; 4(5):621–631.
- Bromová P, Škoda P, Vážný J. Classification of spectra of emission line stars using machine learning techniques. Int J Autom Comput 2014; 11(3):265–273.
- Mark Chang. Artificial Intelligence for Drug Development, Precision Medicine, and Healthcare. Chapman & Hall/CRC Biostatistics Series Series: Boston, 2020.
- Mohril RS, Solanki BS, Kulkarni MS, Lad BK. Residual life prediction in the presence of human error using machine learning. IFAC-PapersOnLine 2020; 53(3):119–124.
- Rozek DC, Andres WC, Smith NB, Leifker FR, Arne K, Jennings G, et al. Using Machine Learning to Predict Suicide Attempts in Military Personnel. Psychiatry Res 2020; 294(October):113–515.
- Zermane H, Kasmi R. Intelligent industrial process control based on fuzzy logic and machine learning. Int J Fuzzy Syst Appl 2020; 9(1):92–111.
- Elaziz MA, Hosny KM, Salah A, Darwish MM, Lu S, Sahlol AT. New machine learning method for image-based diagnosis of COVID-19. PLoS One 2020; 15(6):1–18.
- Chatterjee S, Goyal D, Prakash A, Sharma J. Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application. J Bus Res 2021; 131(October):815–825.
- Court CJ, Cole JM. Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning. NPJ Comput Mater 2020; 6(1):1–9.
- Bălan O, Moise G, Petrescu L, Moldoveanu A, Leordeanu M, Moldoveanu F. Emotion classification based on biophysical signals and machine learning techniques. Symmetry (Basel) 2020; 12(1):1–22.
- Massiris Fernández M, Fernández JÁ, Bajo JM, Delrieux CA. Ergonomic risk assessment based on computer vision and machine learning. Comput Ind Eng 2020; 149(106816):1–11.
- Aslam A, Curry E. A Survey on Object Detection for the Internet of Multimedia Things (IoMT) using Deep Learning and Event-based Middleware: Approaches, Challenges, and Future Directions. Image Vis Comput 2021; 106:104095.
- Moreno-Schneider J, Martínez P, Martínez-Fernández JL. Combining heterogeneous sources in an interactive multimedia content retrieval model. Expert Syst Appl 2017; 69:201–213.
- Hulten G. Building Intelligent Systems: A Guide to Machine Learning Engineering. Apress: Lynnwood, Washington, USA, 2019 doi:10.1007/978-1-4842-3933-9.
- Liu L, Yang F, Zhang P, Wu JY, Hu L. SVM-based ontology matching approach. Int J Autom Comput 2012; 9(3):306–314.
- Zermane H, Drardja A. Development of an efficient cement production monitoring system based on the improved random forest algorithm. Int J Adv Manuf Technol 2022; 120(3–4):1853–1866.
- Thelaidjia T, Ramdani M, Chenikher S. PSO Optimization Algorithm with Autoregressive Modeling and PCA preprocessing to support Vector Machines for Bearing Fault Diagnosis. 2012; 213(0):473–484.
- Khodkar Z, Alavi SM. Target Classification Enhancement in VHF Radar Using Support Vector Machine. Iran J Sci Technol - Trans Electr Eng 2016; 40(1):51–62.
- Shao M, Wang X, Bu Z, Chen X, Wang Y. Prediction of energy consumption in hotel buildings via support vector machines. Sustain Cities Soc 2020; 57(June 2019):102128.
- Kim S, Choi Y, Lee M. Deep learning with support vector data description. Neurocomputing 2015; 165:111–117.
- Goudjil M, Koudil M, Bedda M, Ghoggali N. A Novel Active Learning Method Using SVM for Text Classification. Int J Autom Comput 2018; 15(3):290–298.
- Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods. Cambridge. Cambridge, 2014.
- Sellitto MA, Balugani E, Gamberini R, Rimini B. A Fuzzy Logic Control application to the Cement Industry. IFAC-PapersOnLine 2018; 51(11):1542–1547.
- Shohan S. Supplier Selection Using Fuzzy-Topsis Method: a Case Study in a Cement Industry. IASET J Mech Eng (IASET JME) 2016; 4(1):31–42.
- Zermane H, Mouss H. Internet and fuzzy based control system for rotary kiln in cement manufacturing plant. Int J Comput Intell Syst 2017; 10(1). doi:10.2991/ijcis.2017.10.1.56.
- Menyhárt J, Szabolcsi R. Support vector machine and fuzzy logic. Acta Polytech Hungarica 2016; 13(5):205–220.
- Hullermeier E. Fuzzy Logic in machine learning. SFLA. Paderborn University: Santiago de Compostela, 2017 https://eventos.citius.usc.es/evia2017/presentations/EVI A2017 - Wednesday - 03 - Eyke Hullermeier - Fuzzy Logic in Machine Learning.pdf.
- Chrysostom S, Dwivedi RK. A state of the art review of fuzzy approaches used in the failure modes and effects analysis: A call for research. Int J Ind Syst Eng 2016; 23(3):351–369.
- Novák V. Detection of structural breaks in time series using fuzzy techniques. Int J Fuzzy Log Intell Syst 2018; 18(1):1–12.
- Zermane H, Mouss H. Development of an internet and fuzzy based control system of manufacturing process. Int J Autom Comput 2017; 14(6):706–718.
- Zermane H, Mouss H. Fuzzy control of an industrial process system using internet and web services. Int J Ind Syst Eng 2018; 29(3):389–404.
- Kryszkiewicz M. Pattern Recognition and Machine Intelligence. 2011 http://www.scopus.com/inward/record.url?eid=2-s2.0-79960138448&partnerID=tZOtx3y1.
- Hüllermeier E. Fuzzy sets in machine learning and data mining. Appl Soft Comput J 2011; 11(2):1493–1505.
- Abe S. Fuzzy support vector machines for multilabel classification. Pattern Recognit 2015; 48(6):2110–2117.
- Lin CF, Wang S De. Fuzzy support vector machines. IEEE Trans Neural Networks 2002; 13(2):464–471.
- Abe S, Inoue T. Fuzzy Support Vector Machines for Multiclass Problems. Eur Symp Artif Neural Networks 2002; (April):113–118.
- Chaudhuri A, De K. Fuzzy Support Vector Machine for bankruptcy prediction. Appl Soft Comput J 2011; 11(2):2472–2486.
- Ontiveros E, Melin P, Castillo O. Designing hybrid classifiers based on general type-2 fuzzy logic and support vector machines. Soft Comput 2020; 24(23):18009–18019.
- García-Valdez M, Flores-Fonseca J. Design and implementation of an inference engine for fuzzy systems. Proc 2006 Int Conf Artif Intell ICAI’06 2006; 2(May 2014):578–583.
- Dumitrescu C, Ciotirnae P, Vizitiu C. Fuzzy logic for intelligent control system using soft computing applications. Sensors 2021; 21(8):1–33.
- Zadeh LA. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans Syst Man Cybern 1973; SMC-3(1):28–44.
- Costea CR, Silaghi HM, Zmaranda D, Silaghi MA. Control system architecture for a cement mill based on fuzzy logic. Int J Comput Commun Control 2015; 10(2):165–173.
- Vapnik VN. Pattern Recognition-Statistical Learning Theory. Wiley: Canada, 1998.
- Corinna C, Vapnik V. Support-Vector Networks. Mach Leaming 1995; 20:273–297.