Have a personal or library account? Click to login
Transforming Industrial Supervision Systems: A Comprehensive Approach Integrating Machine Learning Techniques and Fuzzy Logic Cover

Transforming Industrial Supervision Systems: A Comprehensive Approach Integrating Machine Learning Techniques and Fuzzy Logic

Open Access
|Dec 2024

Abstract

In addressing the mounting challenges of industrial supervision systems grappling with intricate processes, this study pioneers a transformative paradigm centered on the SCIMAT cement factory. By seamlessly integrating Machine Learning and Fuzzy Logic, the primary aim is to revolutionize real-time control systems, with a keen focus on cement production. SVM integration into the supervision system, coupled with connectivity to a Programmable Logic Controller (PLC), is complemented by fuzzy real-time controllers’ regression analysis. Rigorous testing and evaluation validate the proposed approach’s reliability, showcasing its effectiveness in discerning optimal system functioning. The system’s practical application within a PLC environment underscores its prowess in issuing commands to industrial equipment, thereby enhancing operational efficiency. Going beyond conventional methodologies, our approach amalgamates SVM classification, fuzzy controllers, and real-time regression analysis, delivering a multifaceted solution for industrial supervision. The system’s standout achievement is an SVM classification accuracy surpassing 94% compared to other classifiers. The K-Nearest Neighbors (K-NN) model demonstrated an accuracy rate of approximately 93.83%. The decision tree model attained an accuracy of around 83.73%. The logistic regression model achieved an accuracy of 80.25%. These models are not only adept at distinguishing optimal functioning from faults but also adept at preserving the linguistic language used by operators. The study’s novelty lies in the holistic integration of SVM and Fuzzy Logic, offering a practical and adaptable solution that not only advances classification accuracy but also significantly reduces maintenance costs, marking a substantial improvement over the traditional methods. This transformative model, validated through SVM classification and practical application, establishes a new standard for flexibility, cost reduction, and overall productivity enhancement in industrial processes.

DOI: https://doi.org/10.2478/sbeef-2024-0021 | Journal eISSN: 2286-2455 | Journal ISSN: 1843-6188
Language: English
Page range: 52 - 66
Published on: Dec 8, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Hanane Zermane, Ahcene Ziar, Hassina Madjour, Djamel Touahar, published by Valahia University of Targoviste
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.