Have a personal or library account? Click to login
Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots Cover

Hole transport in organic field-effect transistors with active poly(3-hexylthiophene) layer containing CdSe quantum dots

Open Access
|Apr 2013

Abstract

Hybrid field-effect transistors (FETs) based on poly(3-hexylthiophene) (P3HT) containing CdSe quantum dots (QDs) were fabricated. The effect of the concentration of QDs on charge transport in the hybrid material was studied. The influence of the QDs capping ligand on charge transport parameters was investigated by replacing the conventional trioctylphosphine oxide (TOPO) surfactant with pyridine to provide closer contact between the organic and inorganic components. Electrical parameters of FETs with an active layer made of P3HT:CdSe QDs blend were determined, showing field-effect hole mobilities up to 1.1×10−4 cm2/Vs. Incorporation of TOPO covered CdSe QDs decreased the charge carrier mobility while the pyridine covered CdSe QDs did not alter this transport parameter significantly.

DOI: https://doi.org/10.2478/s13536-013-0101-0 | Journal eISSN: 2083-134X | Journal ISSN: 2083-1331
Language: English
Page range: 288 - 297
Published on: Apr 20, 2013
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2013 U. Bielecka, P. Lutsyk, M. Nyk, K. Janus, M. Samoc, W. Bartkowiak, S. Nespurek, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.