References
- Liuhto K. The impact of Russia’s invasion of Ukraine on the European gas supply: An emphasis on new gas import infrastructure in the EU. Fossil Fuels in the European Union 2024:101–121. https://doi.org/10.1007/978-3-031-56790-2_8
- Kumar S., Lohan S. K., Parihar D. S. Biomass Energy from Agriculture. Handbook of Energy Management in Agriculture 2023:181–199. https://doi.org/10.1007/978-981-19-7736-7_10-1
- Richard T., Brownell D., Ruamsook K., Liu J., Thomchick E. Biomass Harvest and logistics. CRC Press eBooks 2012:119–132. https://doi.org/10.1201/b11711-9
- Zhai J., Burke I. T., Stewart D. I. Beneficial management of biomass combustion ashes. Renewable and Sustainable Energy Reviews 2021:151:111555. https://doi.org/10.1016/j.rser.2021.111555
- Bošnjak K., Vranić M., Mašek T., Brčić M. Primjena pepela iz biomase na travnjacima. Poljoprivreda 2022:28(1):89–94. https://doi.org/10.18047/poljo.28.1.12
- Vassilev S. V., Baxter D., Andersen L. K., Vassileva C. G. An overview of the composition and application of biomass ash.: Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 2013:105:19–39. https://doi.org/10.1016/j.fuel.2012.10.001
- Zhai J., Burke I. T., Mayes W. M., Stewart D. I. New insights into biomass combustion ash categorisation: A phylogenetic analysis. Fuel 2021:287:119469. https://doi.org/10.1016/j.fuel.2020.119469
- Rouhani A., Pidlisnyuk V., Souki K. S. A. Characterizations of ash derived from the crops’ waste biomass for soil improvement and assisted phytoremediation. Biocatalysis and Agricultural Biotechnology 2024:62:103456. https://doi.org/10.1016/j.bcab.2024.103456
- Huang R., Liu J., Wang Z., Gao M. Effects of Different Soil Amendments Application on Soil Aggregate Stability and Soil Consistency under Wetting and Drying Altered Planting System. Communications in Soil Science and Plant Analysis 2019:50(18):2263–2277. https://doi.org/10.1080/00103624.2019.1659296
- Pouragha M., Eghbalian M., Wan R., Wong T. Derivation of soil water retention curve incorporating electrochemical effects. Acta Geotechnica 2021:16:1147–1160. https://doi.org/10.1007/s11440-020-01070-z
- Cruz-Paredes C., López-García Á., Rubæk G. H., Hovmand M. F., Sørensen P., Kjøller R. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield. nutrition. cadmium accumulation and mycorrhizal status. Science of The Total Environment 2017:575:1168–1176. https://doi.org/10.1016/j.scitotenv.2016.09.194
- Xu C., Ni W., Li K., Zhang S., Xu D. Activation mechanisms of three types of industrial by-product gypsums on steel slag–granulated blast furnace slag-based binders. Construction and Building Materials 2021:288:123111. https://doi.org/10.1016/j.conbuildmat.2021.123111
- Mejía-Piña K. G., Huerta-Diaz M. A., González-Yajimovich O. Calibration of handheld X-ray fluorescence (XRF) equipment for optimum determination of elemental concentrations in sediment samples. Talanta 2016:161:359–367. https://doi.org/10.1016/j.talanta.2016.08.066
- Carrubba A., La Torre R., Saiano F., Alonzo G. Effect of sowing time on coriander performance in a semiarid Mediterranean environment. Crop Science 2006:46(1):437–447. https://doi.org/10.2135/cropsci2005.0169
- Szczepanik M., Szyszlak-Bargłowicz J., Zając G., Koniuszy A., Hawrot-Paw M., Wolak A. The Use of Multivariate Data Analysis (HCA and PCA) to Characterize Ashes from Biomass Combustion. Energies 2021:14(21):6887. https://doi.org/10.3390/en14216887
- Mandal A., Mundhe D., Sonkamble V., Wagh N., Lakkakula J. 13 – Impact of heavy metal contamination on soil environment and advances in its revitalization strategies. Development in Waste Water Treatment Research and Processes 2022:215–241. https://doi.org/10.1016/b978-0-323-85584-6.00014-5
- Dash S., Gupta P., Mustakim S. M., Mohanty I. Influence of binders, mix proportions, and fabrication method on the characteristics of fly ash aggregate. Advances in Civil and Architectural Engineering 2023:14(27):67–79. https://doi.org/10.13167/2023.27.5
- Buneviciene K., Drapanauskaite D., Mažeika R., Tilvikiene V. Biofuel ash granules as a source of soil and plant nutrients. Zemdirbyste-Agriculture 2021:108(1):19–26. https://doi.org/10.13080/z-a.2021.108.003
- Albuquerque A. R. L., Gama M. a. P., Lima V. M. N., Rodrigues A. O., Angélica R. S., Paz S. P. A. Recycling Nutrients Contained in Biomass Bottom Ash from Industrial Waste to Enhance the Fertility of an Amazonian Acidic Soil. Agriculture 2022:12(12):2093. https://doi.org/10.3390/agriculture12122093
- Basu M., Mahapatra S. C., Bhadoria P. B. S. Exploiting Fly Ash as Soil Ameliorant to Improve Productivity of Sabai Grass (Eulaliopsis binata (Retz.) C. E. Hubb) under Acid Lateritic Soil of India. Asian Journal of Plant Sciences 2006:5(6):1027–1030. https://doi.org/10.3923/ajps.2006.1027.1030
- Petlickaitė R., Romaneckas K., Sinkevičienė A., Praspaliauskas M., Jasinskas A. Effect of Burned Multi-Crop ashes on FABA Bean-Development parameters. Plants 2024:13(16):2182. https://doi.org/10.3390/plants13162182
- Khajehpour S., Karbassi A., Honarmand M., Shariat M. Exposure risk assessment. pollution level. and source identification of arsenic in soil: A case study of the Bardsir Plain (southeastern Iran). International Journal of Environmental Health Research 2022:32(5):1123–1136. https://doi.org/10.1080/09603123.2020.1836134
- Szostek M., Szpunar-Krok E., Stanowska S., Kaniuczak D., Matłok N. Effect of Ash from Biomass Combustion on the Selected Elements Accumulation in Plants and Soil. Journal of Ecological Engineering 2024:25(12):387–401. https://doi.org/10.12911/22998993/194493