References
- Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V. Turning inside out: Filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. Journal of Fungi 2021:7(7):535. https://doi.org/10.3390/jof7070535
- Dhevagi P., Ramya A., Priyatharshini S., Thanuja K. G., Ambreetha S., Nivetha A. Industrially important fungal enzymes: productions and applications. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective 2021:263–309. https://doi.org/10.1007/978-3-030-68260-6_11
- El-Gendi H., Saleh A. H., Badierah R., Redwan E. M., El-Maradny Y. A., El-Fakharany E. M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. Journal of Fungi 2021:8(1):23. https://doi.org/10.3390/jof8010023
- Sunar K., Kumar U., Deshmukh S. Recent applications of enzymes in personal care products, in Agro-Industrial Wastes as Feedstock for Enzyme Production. Agro-Industrial Wastes as Feedstock for Enzyme Production. Academic Press 2016:279–298. https://doi.org/10.1016/B978-0-12-802392-1.00012-5
- Niyonzima F. N. Detergent-compatible fungal cellulases. Folia Microbiologica 2021:66(1):25–40. https://doi.org/10.1007/s12223-020-00838-w
- Ljubica V., Pitzler C., Körfer G., Jakob F., Martinez R., Maurer K.-H., Schwaneberg U. Advances in protease engineering for laundry detergents. New Biotechnology 2015:32(6):629–634. https://doi.org/10.1016/j.nbt.2014.12.010
- Rigoldi F., Donini S., Redaelli A., Parisini E., Gautieri A. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2018:2(1). https://doi.org/10.1063/1.4997367
- Wunderlich S., Gatto K. A. Consumer perception of genetically modified organisms and sources of information. Advances in Nutrition 2015:6(6):842–851. https://doi.org/10.3945/an.115.008870
- Ryan C. D, Henggeler E., Gilbert S., Schaul A. J., Swarthout J. T. Exploring the GMO narrative through labeling: strategies, products, and politics. GM Crops & Food 2024:15(1):51–66. https://doi.org/10.1080/21645698.2024.2318027
- Aaron A., Liaukonyte J., Wang E., Zhuet X. GMO and non-GMO labeling effects: Evidence from a quasi-natural experiment. Marketing Science 2023:42(2):233–250. https://doi.org/10.1287/mksc.2022.1375
- Prückler M., Siebenhandl-Ehn S., Apprich C., Höltinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT – Food Science and Technology 2014:56(2):211–221. https://doi.org/10.1016/j.lwt.2013.12.004
- Neves M. A., Kimura T., Shimizu N., Shiiba K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Brazilian Archives of Biology and Technology 2006:49(3):481–490. https://doi.org/10.1590/S1516-89132006000400017
- Onipe O. O., Jideani A. I. O., Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology 2015:50(12):2509–2518. https://doi.org/10.1111/ijfs.12935
- Nandini C. D., Salimath P. V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indioan flat bread) making quality. Food Chemistry 2001:73:197–203. https://doi.org/10.1016/S0308-8146(00)00278-8
- Curti E., Carini E., Bonacini G., Tribuzio G., Vittadini E. Effect of the addition of bran fractions on bread properties. Journal of Cereal Science 2013:57(3):325–332. https://doi.org/10.1016/j.jcs.2012.12.003
- Beaugrand J., Reis D., Guillon F., Debeire P., Chabbert B. Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. International Journal of Plant Sciences 2004:165(4):553–563. https://doi.org/10.1086/386554
- Ravindran R., Jaiswal A. K. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering 2016:3(4):30. https://doi.org/10.3390/bioengineering3040030
- Sharma D., Garlapat V. K., Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2016:7(2):88–97. https://doi.org/10.1080/21655979.2016.1160190
- Balandrán-Quintana R. R., Mercado-Ruiz J. N., Mendoza-Wilson A. M. Wheat bran proteins: a review of their uses and potential. Food Reviews International 2015:31(3):279–293. https://doi.org/10.1080/87559129.2015.1015137
- Mischko W., Hirte M., Roehrer S., Engelhardt H., Mehlmer N., Minceva M., Brück T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry 2018:20(11):2637–2650. https://doi.org/10.1039/C8GC00434J
- Guo J., Zhang M., Fang Z. Valorization of mushroom by‐products: a review. Journal of the Science of Food and Agriculture 2022:102(13):5593–5605. https://doi.org/10.1002/jsfa.11946
- Hu F., RagauskasA. Pretreatment and lignocellulosic chemistry. Bioenergy Research 2012:5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0
- Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995:3(9):853–859. https://doi.org/10.1016/S0969-2126(01)00220-9
- Couturier M., Berrin J.-G. The saccharification step: the main enzymatic components. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production. Springer, 2013:93–110. https://doi.org/10.1007/978-3-642-37861-4_5
- Cocinero E. J., David P., Gamblin B. D. G., Simons J. P. The building blocks of cellulose_the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. Journal of the American Chemical Society 2009:131:11117–11123. https://doi.org/10.1021/ja903322w
- Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances 2009:27(2):185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
- Dashtaban M., Schraft H., Quin W. Fungal bioconversion of lignocellulosic residues_opportunities & perspectives. International Journal of Biological Sciences 2009:5:578–595. https://doi.org/10.7150/ijbs.5.578
- Kracher D., Ludwig R. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Die Bodenkultur: Journal of Land Management, Food and Environment 2016:67(3):145–163. https://doi.org/10.1515/boku-2016-0013
- Dervilly-Pinel G. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers 2004:55(2):171–177. https://doi.org/10.1016/j.carbpol.2003.09.004
- Moreira L., Filho E. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2008:79:165–178. https://doi.org/10.1007/s00253-008-1423-4
- Kjeldahl J. A new method for the estimation of nitrogen in organic compounds. Z. Anal. chem 1883:22(1):366–382. https://doi.org/10.1007/BF01338151
- Shaigani P., Awad D., Redai V., Fuchs M., Haack M., Mehlmer N., Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories 2021:20:1–18. https://doi.org/10.1186/s12934-021-01710-3
- Deshavath N. N., Mukherjee G., Goud V. V., Veeranki V. D., Sastri C. V. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules 2020:156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
- Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 1999:69(3):249–254. https://doi.org/10.1016/S0960-8524(98)00188-6
- Manni H., Sun Y., Zou D., Yuan H., Zhu B., Li X., Pang Y. Influence of temperature on hydrolysis acidification of food waste. Procedia Environmental Sciences 2012:16:85–94. https://doi.org/10.1016/j.proenv.2012.10.012
- Kim J. S., Lee Y., Torget R. W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. In Twenty-Second Symposium on Biotechnology for Fuels and Chemicals 2001. Springer, https://doi.org/10.1007/978-1-4612-0217-2_28
- Krall S. M., McFeeters R. F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. Journal of Agricultural and food Chemistry 1998:46(4):1311–1315. https://doi.org/10.1021/jf970473y
- Duarte A. W. F., Dos Santos J. A., Vianna M. V., Vieira J. M. F., Mallagutti V. H., Inforsato F. J., Wentzel L. C. P., Lario L. D., Rodrigues A., Pagnocca F. C. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Critical Reviews in Biotechnology 2018:38(4):600–619. https://doi.org/10.1080/07388551.2017.1379468
- Maheshwari R., Bharadwaj G., Bhat M. K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiology and Molecular Biology Reviews 2000:64(3):461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000
- Kües U. Fungal enzymes for environmental management. Current Opinion in Biotechnology 2015:33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006
- Rivers D. B., Gracheck S. J., Woodford L. C., Emert G. H. Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnol. Bioeng. 1984:26(7). https://doi.org/10.1002/bit.260260727
- Rafiei V., VélëzH., TzelepisG. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences 2021:22(17):9359. https://doi.org/10.3390/ijms22179359
- Shankar A., Jain K., Kuhad R., Sharma K. Comparison of lignocellulosic enzymes and CAZymes between ascomycetes (Trichoderma) and basidiomycetes (Ganoderma) species: a proteomic approach. Zeitschrift für Naturforschung C 2023. https://doi.org/10.1515/znc-2023-0125
- Martinez D. et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 2008:26(5):553–560.
- Yao C., Sun N., Gao W., Sun Y., Zhang J., Liu H., Zhong Y. Overexpression of a novel vacuolar serine proteaseencoding gene (spt1) to enhance cellulase production in Trichoderma reesei. Fermentation 2023:9(2):191. https://doi.org/10.3390/fermentation9020191
- Beygmoradi A., Homaei A., Hemmati R., Fernandes P. Recombinant protein expression: challenges in production and folding related matters. International Journal of Biological Macromolecules 2023:233:123407. https://doi.org/10.1016/j.ijbiomac.2023.123407
- İncir İ., Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expression and Purification 2024:219:106463. https://doi.org/10.1016/j.pep.2024.106463
- Dixit Y., Yadav P., Sharma A. K., Pandey P., Kuila A. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renewable and Sustainable Energy Reviews 2023:187:113772. https://doi.org/10.1016/j.rser.2023.113772
- Gomes A. M. V, Carmo T. S., Carvalho L. S., Bahia F. M., Skorupa N. S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018:6(2):38. https://doi.org/10.3390/microorganisms6020038
- De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnology Advances 2023:64:108121. https://doi.org/10.1016/j.biotechadv.2023.108121
- Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnology for biofuels 2013:6:1–14. https://doi.org/10.1186/1754-6834-6-127
- Arntzen M. Ø., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports 2020:10(1):20267. https://doi.org/10.1038/s41598-020-75217-z
- Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., J Detter C., Larimer F., Coutinho P. M., Henrissat B., Berka R., Cullen D., Rokhsar D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature biotechnology 2004:22(6):695–700. https://doi.org/10.1038/nbt967
- Kumar R., Verma D., Sharma S., Satyanarayana T. Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana T., Deshmukh S. K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology 2023:465–491. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_16
- Mohammad I. E., Syed S., Darukamalli M. R., Alapati K. S. Review on Thermozymes Produced by Thermophilic Fungi: A Gold Mine for Industrial Applications. European Journal of Biology and Biotechnology 2023:4(1):1–5. https://doi.org/10.24018/ejbio.2023.4.1.438
- Amin F., Asad S. A., Nazli Z.-i-H., Kalsoom U., Bhatti H. N., Bilal M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from Penicillium paxilli. Biomass Conversion and Biorefinery 2023:13(14):13181–13196. https://doi.org/10.1007/s13399-022-02559-1
- Rosgaard L., Pedersen S., Cherry J. R., Harris P., Meyer A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 2006:22(2):493–498. https://doi.org/10.1021/bp050361o