Have a personal or library account? Click to login
Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production Cover

Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production

Open Access
|Oct 2024

References

  1. Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V. Turning inside out: Filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. Journal of Fungi 2021:7(7):535. https://doi.org/10.3390/jof7070535
  2. Dhevagi P., Ramya A., Priyatharshini S., Thanuja K. G., Ambreetha S., Nivetha A. Industrially important fungal enzymes: productions and applications. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective 2021:263–309. https://doi.org/10.1007/978-3-030-68260-6_11
  3. El-Gendi H., Saleh A. H., Badierah R., Redwan E. M., El-Maradny Y. A., El-Fakharany E. M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. Journal of Fungi 2021:8(1):23. https://doi.org/10.3390/jof8010023
  4. Sunar K., Kumar U., Deshmukh S. Recent applications of enzymes in personal care products, in Agro-Industrial Wastes as Feedstock for Enzyme Production. Agro-Industrial Wastes as Feedstock for Enzyme Production. Academic Press 2016:279–298. https://doi.org/10.1016/B978-0-12-802392-1.00012-5
  5. Niyonzima F. N. Detergent-compatible fungal cellulases. Folia Microbiologica 2021:66(1):25–40. https://doi.org/10.1007/s12223-020-00838-w
  6. Ljubica V., Pitzler C., Körfer G., Jakob F., Martinez R., Maurer K.-H., Schwaneberg U. Advances in protease engineering for laundry detergents. New Biotechnology 2015:32(6):629–634. https://doi.org/10.1016/j.nbt.2014.12.010
  7. Rigoldi F., Donini S., Redaelli A., Parisini E., Gautieri A. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2018:2(1). https://doi.org/10.1063/1.4997367
  8. Wunderlich S., Gatto K. A. Consumer perception of genetically modified organisms and sources of information. Advances in Nutrition 2015:6(6):842–851. https://doi.org/10.3945/an.115.008870
  9. Ryan C. D, Henggeler E., Gilbert S., Schaul A. J., Swarthout J. T. Exploring the GMO narrative through labeling: strategies, products, and politics. GM Crops & Food 2024:15(1):51–66. https://doi.org/10.1080/21645698.2024.2318027
  10. Aaron A., Liaukonyte J., Wang E., Zhuet X. GMO and non-GMO labeling effects: Evidence from a quasi-natural experiment. Marketing Science 2023:42(2):233–250. https://doi.org/10.1287/mksc.2022.1375
  11. Prückler M., Siebenhandl-Ehn S., Apprich C., Höltinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT – Food Science and Technology 2014:56(2):211–221. https://doi.org/10.1016/j.lwt.2013.12.004
  12. Neves M. A., Kimura T., Shimizu N., Shiiba K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Brazilian Archives of Biology and Technology 2006:49(3):481–490. https://doi.org/10.1590/S1516-89132006000400017
  13. Onipe O. O., Jideani A. I. O., Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology 2015:50(12):2509–2518. https://doi.org/10.1111/ijfs.12935
  14. Nandini C. D., Salimath P. V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indioan flat bread) making quality. Food Chemistry 2001:73:197–203. https://doi.org/10.1016/S0308-8146(00)00278-8
  15. Curti E., Carini E., Bonacini G., Tribuzio G., Vittadini E. Effect of the addition of bran fractions on bread properties. Journal of Cereal Science 2013:57(3):325–332. https://doi.org/10.1016/j.jcs.2012.12.003
  16. Beaugrand J., Reis D., Guillon F., Debeire P., Chabbert B. Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. International Journal of Plant Sciences 2004:165(4):553–563. https://doi.org/10.1086/386554
  17. Ravindran R., Jaiswal A. K. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering 2016:3(4):30. https://doi.org/10.3390/bioengineering3040030
  18. Sharma D., Garlapat V. K., Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2016:7(2):88–97. https://doi.org/10.1080/21655979.2016.1160190
  19. Balandrán-Quintana R. R., Mercado-Ruiz J. N., Mendoza-Wilson A. M. Wheat bran proteins: a review of their uses and potential. Food Reviews International 2015:31(3):279–293. https://doi.org/10.1080/87559129.2015.1015137
  20. Mischko W., Hirte M., Roehrer S., Engelhardt H., Mehlmer N., Minceva M., Brück T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry 2018:20(11):2637–2650. https://doi.org/10.1039/C8GC00434J
  21. Guo J., Zhang M., Fang Z. Valorization of mushroom by‐products: a review. Journal of the Science of Food and Agriculture 2022:102(13):5593–5605. https://doi.org/10.1002/jsfa.11946
  22. Hu F., RagauskasA. Pretreatment and lignocellulosic chemistry. Bioenergy Research 2012:5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0
  23. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995:3(9):853–859. https://doi.org/10.1016/S0969-2126(01)00220-9
  24. Couturier M., Berrin J.-G. The saccharification step: the main enzymatic components. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production. Springer, 2013:93–110. https://doi.org/10.1007/978-3-642-37861-4_5
  25. Cocinero E. J., David P., Gamblin B. D. G., Simons J. P. The building blocks of cellulose_the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. Journal of the American Chemical Society 2009:131:11117–11123. https://doi.org/10.1021/ja903322w
  26. Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances 2009:27(2):185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
  27. Dashtaban M., Schraft H., Quin W. Fungal bioconversion of lignocellulosic residues_opportunities & perspectives. International Journal of Biological Sciences 2009:5:578–595. https://doi.org/10.7150/ijbs.5.578
  28. Kracher D., Ludwig R. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Die Bodenkultur: Journal of Land Management, Food and Environment 2016:67(3):145–163. https://doi.org/10.1515/boku-2016-0013
  29. Dervilly-Pinel G. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers 2004:55(2):171–177. https://doi.org/10.1016/j.carbpol.2003.09.004
  30. Moreira L., Filho E. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2008:79:165–178. https://doi.org/10.1007/s00253-008-1423-4
  31. Kjeldahl J. A new method for the estimation of nitrogen in organic compounds. Z. Anal. chem 1883:22(1):366–382. https://doi.org/10.1007/BF01338151
  32. Shaigani P., Awad D., Redai V., Fuchs M., Haack M., Mehlmer N., Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories 2021:20:1–18. https://doi.org/10.1186/s12934-021-01710-3
  33. Deshavath N. N., Mukherjee G., Goud V. V., Veeranki V. D., Sastri C. V. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules 2020:156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
  34. Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 1999:69(3):249–254. https://doi.org/10.1016/S0960-8524(98)00188-6
  35. Manni H., Sun Y., Zou D., Yuan H., Zhu B., Li X., Pang Y. Influence of temperature on hydrolysis acidification of food waste. Procedia Environmental Sciences 2012:16:85–94. https://doi.org/10.1016/j.proenv.2012.10.012
  36. Kim J. S., Lee Y., Torget R. W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. In Twenty-Second Symposium on Biotechnology for Fuels and Chemicals 2001. Springer, https://doi.org/10.1007/978-1-4612-0217-2_28
  37. Krall S. M., McFeeters R. F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. Journal of Agricultural and food Chemistry 1998:46(4):1311–1315. https://doi.org/10.1021/jf970473y
  38. Duarte A. W. F., Dos Santos J. A., Vianna M. V., Vieira J. M. F., Mallagutti V. H., Inforsato F. J., Wentzel L. C. P., Lario L. D., Rodrigues A., Pagnocca F. C. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Critical Reviews in Biotechnology 2018:38(4):600–619. https://doi.org/10.1080/07388551.2017.1379468
  39. Maheshwari R., Bharadwaj G., Bhat M. K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiology and Molecular Biology Reviews 2000:64(3):461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000
  40. Kües U. Fungal enzymes for environmental management. Current Opinion in Biotechnology 2015:33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006
  41. Rivers D. B., Gracheck S. J., Woodford L. C., Emert G. H. Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnol. Bioeng. 1984:26(7). https://doi.org/10.1002/bit.260260727
  42. Rafiei V., VélëzH., TzelepisG. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences 2021:22(17):9359. https://doi.org/10.3390/ijms22179359
  43. Shankar A., Jain K., Kuhad R., Sharma K. Comparison of lignocellulosic enzymes and CAZymes between ascomycetes (Trichoderma) and basidiomycetes (Ganoderma) species: a proteomic approach. Zeitschrift für Naturforschung C 2023. https://doi.org/10.1515/znc-2023-0125
  44. Martinez D. et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 2008:26(5):553–560.
  45. Yao C., Sun N., Gao W., Sun Y., Zhang J., Liu H., Zhong Y. Overexpression of a novel vacuolar serine proteaseencoding gene (spt1) to enhance cellulase production in Trichoderma reesei. Fermentation 2023:9(2):191. https://doi.org/10.3390/fermentation9020191
  46. Beygmoradi A., Homaei A., Hemmati R., Fernandes P. Recombinant protein expression: challenges in production and folding related matters. International Journal of Biological Macromolecules 2023:233:123407. https://doi.org/10.1016/j.ijbiomac.2023.123407
  47. İncir İ., Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expression and Purification 2024:219:106463. https://doi.org/10.1016/j.pep.2024.106463
  48. Dixit Y., Yadav P., Sharma A. K., Pandey P., Kuila A. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renewable and Sustainable Energy Reviews 2023:187:113772. https://doi.org/10.1016/j.rser.2023.113772
  49. Gomes A. M. V, Carmo T. S., Carvalho L. S., Bahia F. M., Skorupa N. S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018:6(2):38. https://doi.org/10.3390/microorganisms6020038
  50. De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnology Advances 2023:64:108121. https://doi.org/10.1016/j.biotechadv.2023.108121
  51. Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnology for biofuels 2013:6:1–14. https://doi.org/10.1186/1754-6834-6-127
  52. Arntzen M. Ø., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports 2020:10(1):20267. https://doi.org/10.1038/s41598-020-75217-z
  53. Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., J Detter C., Larimer F., Coutinho P. M., Henrissat B., Berka R., Cullen D., Rokhsar D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature biotechnology 2004:22(6):695–700. https://doi.org/10.1038/nbt967
  54. Kumar R., Verma D., Sharma S., Satyanarayana T. Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana T., Deshmukh S. K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology 2023:465–491. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_16
  55. Mohammad I. E., Syed S., Darukamalli M. R., Alapati K. S. Review on Thermozymes Produced by Thermophilic Fungi: A Gold Mine for Industrial Applications. European Journal of Biology and Biotechnology 2023:4(1):1–5. https://doi.org/10.24018/ejbio.2023.4.1.438
  56. Amin F., Asad S. A., Nazli Z.-i-H., Kalsoom U., Bhatti H. N., Bilal M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from Penicillium paxilli. Biomass Conversion and Biorefinery 2023:13(14):13181–13196. https://doi.org/10.1007/s13399-022-02559-1
  57. Rosgaard L., Pedersen S., Cherry J. R., Harris P., Meyer A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 2006:22(2):493–498. https://doi.org/10.1021/bp050361o
DOI: https://doi.org/10.2478/rtuect-2024-0040 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 510 - 526
Submitted on: Apr 24, 2024
Accepted on: Sep 14, 2024
Published on: Oct 26, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Melania Pilz, Nicolò Castellan, Fosca Conti, Farah Qoura, Thomas Brück, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.