Have a personal or library account? Click to login
Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production Cover

Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production

Open Access
|Oct 2024

References

  1. Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V. Turning inside out: Filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. <em>Journal of Fungi</em> 2021:7(7):535. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jof7070535" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jof7070535</a>">https://doi.org/10.3390/jof7070535</ext-link>
  2. Dhevagi P., Ramya A., Priyatharshini S., Thanuja K. G., Ambreetha S., Nivetha A. Industrially important fungal enzymes: productions and applications. <em>Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective</em> 2021:263–309. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-030-68260-6_11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-030-68260-6_11</a>">https://doi.org/10.1007/978-3-030-68260-6_11</ext-link>
  3. El-Gendi H., Saleh A. H., Badierah R., Redwan E. M., El-Maradny Y. A., El-Fakharany E. M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. <em>Journal of Fungi</em> 2021:8(1):23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jof8010023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jof8010023</a>">https://doi.org/10.3390/jof8010023</ext-link>
  4. Sunar K., Kumar U., Deshmukh S. Recent applications of enzymes in personal care products, in Agro-Industrial Wastes as Feedstock for Enzyme Production. <em>Agro-Industrial Wastes as Feedstock for Enzyme Production. Academic Press</em> 2016:279–298. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-802392-1.00012-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-802392-1.00012-5</a>">https://doi.org/10.1016/B978-0-12-802392-1.00012-5</ext-link>
  5. Niyonzima F. N. Detergent-compatible fungal cellulases. <em>Folia Microbiologica</em> 2021:66(1):25–40. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12223-020-00838-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12223-020-00838-w</a>">https://doi.org/10.1007/s12223-020-00838-w</ext-link>
  6. Ljubica V., Pitzler C., Körfer G., Jakob F., Martinez R., Maurer K.-H., Schwaneberg U. Advances in protease engineering for laundry detergents. <em>New Biotechnology</em> 2015:32(6):629–634. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.nbt.2014.12.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nbt.2014.12.010</a>">https://doi.org/10.1016/j.nbt.2014.12.010</ext-link>
  7. Rigoldi F., Donini S., Redaelli A., Parisini E., Gautieri A. Engineering of thermostable enzymes for industrial applications. <em>APL Bioengineering</em> 2018:2(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.4997367" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.4997367</a>">https://doi.org/10.1063/1.4997367</ext-link>
  8. Wunderlich S., Gatto K. A. Consumer perception of genetically modified organisms and sources of information. A<em>dvances in Nutrition</em> 2015:6(6):842–851. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3945/an.115.008870" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3945/an.115.008870</a>">https://doi.org/10.3945/an.115.008870</ext-link>
  9. Ryan C. D, Henggeler E., Gilbert S., Schaul A. J., Swarthout J. T. Exploring the GMO narrative through labeling: strategies, products, and politics. <em>GM Crops &amp; Food</em> 2024:15(1):51–66. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/21645698.2024.2318027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21645698.2024.2318027</a>">https://doi.org/10.1080/21645698.2024.2318027</ext-link>
  10. Aaron A., Liaukonyte J., Wang E., Zhuet X. GMO and non-GMO labeling effects: Evidence from a quasi-natural experiment. <em>Marketing Science</em> 2023:42(2):233–250. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1287/mksc.2022.1375" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1287/mksc.2022.1375</a>">https://doi.org/10.1287/mksc.2022.1375</ext-link>
  11. Prückler M., Siebenhandl-Ehn S., Apprich C., Höltinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. <em>LWT – Food Science and Technology</em> 2014:56(2):211–221. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.lwt.2013.12.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.lwt.2013.12.004</a>">https://doi.org/10.1016/j.lwt.2013.12.004</ext-link>
  12. Neves M. A., Kimura T., Shimizu N., Shiiba K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. <em>Brazilian Archives of Biology and Technology</em> 2006:49(3):481–490. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1590/S1516-89132006000400017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1590/S1516-89132006000400017</a>">https://doi.org/10.1590/S1516-89132006000400017</ext-link>
  13. Onipe O. O., Jideani A. I. O., Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. <em>International Journal of Food Science &amp; Technology</em> 2015:50(12):2509–2518. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/ijfs.12935" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/ijfs.12935</a>">https://doi.org/10.1111/ijfs.12935</ext-link>
  14. Nandini C. D., Salimath P. V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indioan flat bread) making quality. <em>Food Chemistry</em> 2001:73:197–203. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0308-8146(00)00278-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0308-8146(00)00278-8</a>">https://doi.org/10.1016/S0308-8146(00)00278-8</ext-link>
  15. Curti E., Carini E., Bonacini G., Tribuzio G., Vittadini E. Effect of the addition of bran fractions on bread properties<em>. Journal of Cereal Science</em> 2013:57(3):325–332. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jcs.2012.12.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcs.2012.12.003</a>">https://doi.org/10.1016/j.jcs.2012.12.003</ext-link>
  16. Beaugrand J., Reis D., Guillon F., Debeire P., Chabbert B. Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. <em>International Journal of Plant Sciences</em> 2004:165(4):553–563. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1086/386554" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1086/386554</a>">https://doi.org/10.1086/386554</ext-link>
  17. Ravindran R., Jaiswal A. K. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. <em>Bioengineering</em> 2016:3(4):30. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/bioengineering3040030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/bioengineering3040030</a>">https://doi.org/10.3390/bioengineering3040030</ext-link>
  18. Sharma D., Garlapat V. K., Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions<em>. Bioengineered</em> 2016:7(2):88–97. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/21655979.2016.1160190" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21655979.2016.1160190</a>">https://doi.org/10.1080/21655979.2016.1160190</ext-link>
  19. Balandrán-Quintana R. R., Mercado-Ruiz J. N., Mendoza-Wilson A. M. Wheat bran proteins: a review of their uses and potential. <em>Food Reviews International</em> 2015:31(3):279–293. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/87559129.2015.1015137" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/87559129.2015.1015137</a>">https://doi.org/10.1080/87559129.2015.1015137</ext-link>
  20. Mischko W., Hirte M., Roehrer S., Engelhardt H., Mehlmer N., Minceva M., Brück T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. <em>Green Chemistry</em> 2018:20(11):2637–2650. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C8GC00434J" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C8GC00434J</a>">https://doi.org/10.1039/C8GC00434J</ext-link>
  21. Guo J., Zhang M., Fang Z. Valorization of mushroom by‐products: a review. <em>Journal of the Science of Food and Agriculture</em> 2022:102(13):5593–5605. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/jsfa.11946" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jsfa.11946</a>">https://doi.org/10.1002/jsfa.11946</ext-link>
  22. Hu F., RagauskasA. Pretreatment and lignocellulosic chemistry. <em>Bioenergy Research</em> 2012:5:1043–1066. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s12155-012-9208-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s12155-012-9208-0</a>">https://doi.org/10.1007/s12155-012-9208-0</ext-link>
  23. Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. <em>Structure</em> 1995:3(9):853–859. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0969-2126(01)00220-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0969-2126(01)00220-9</a>">https://doi.org/10.1016/S0969-2126(01)00220-9</ext-link>
  24. Couturier M., Berrin J.-G. The saccharification step: the main enzymatic components. In <em>Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production</em>. Springer, 2013:93–110. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-642-37861-4_5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-642-37861-4_5</a>">https://doi.org/10.1007/978-3-642-37861-4_5</ext-link>
  25. Cocinero E. J., David P., Gamblin B. D. G., Simons J. P. The building blocks of cellulose_the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. <em>Journal of the American Chemical Society</em> 2009:131:11117–11123. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/ja903322w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/ja903322w</a>">https://doi.org/10.1021/ja903322w</ext-link>
  26. Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. <em>Biotechnology advances</em> 2009:27(2):185–194. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biotechadv.2008.11.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biotechadv.2008.11.001</a>">https://doi.org/10.1016/j.biotechadv.2008.11.001</ext-link>
  27. Dashtaban M., Schraft H., Quin W. Fungal bioconversion of lignocellulosic residues_opportunities &amp; perspectives. <em>International Journal of Biological Sciences</em> 2009:5:578–595. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.7150/ijbs.5.578" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.7150/ijbs.5.578</a>">https://doi.org/10.7150/ijbs.5.578</ext-link>
  28. Kracher D., Ludwig R. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. <em>Die Bodenkultur: Journal of Land Management, Food and Environment</em> 2016:67(3):145–163. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/boku-2016-0013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/boku-2016-0013</a>">https://doi.org/10.1515/boku-2016-0013</ext-link>
  29. Dervilly-Pinel G. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. <em>Carbohydrate Polymers</em> 2004:55(2):171–177. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.carbpol.2003.09.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.carbpol.2003.09.004</a>">https://doi.org/10.1016/j.carbpol.2003.09.004</ext-link>
  30. Moreira L., Filho E. An overview of mannan structure and mannan-degrading enzyme systems. <em>Applied Microbiology and Biotechnology</em> 2008:79:165–178. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00253-008-1423-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00253-008-1423-4</a>">https://doi.org/10.1007/s00253-008-1423-4</ext-link>
  31. Kjeldahl J. A new method for the estimation of nitrogen in organic compounds. <em>Z. Anal. chem</em> 1883:22(1):366–382. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/BF01338151" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF01338151</a>">https://doi.org/10.1007/BF01338151</ext-link>
  32. Shaigani P., Awad D., Redai V., Fuchs M., Haack M., Mehlmer N., Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers<em>. Microbial Cell Factories</em> 2021:20:1–18. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s12934-021-01710-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s12934-021-01710-3</a>">https://doi.org/10.1186/s12934-021-01710-3</ext-link>
  33. Deshavath N. N., Mukherjee G., Goud V. V., Veeranki V. D., Sastri C. V. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. <em>International Journal of Biological Macromolecules</em> 2020:156:180–185. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijbiomac.2020.04.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijbiomac.2020.04.045</a>">https://doi.org/10.1016/j.ijbiomac.2020.04.045</ext-link>
  34. Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. <em>Bioresource Technology</em> 1999:69(3):249–254. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0960-8524(98" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0960-8524(98</a>">https://doi.org/10.1016/S0960-8524(98)00188-6</ext-link>
  35. Manni H., Sun Y., Zou D., Yuan H., Zhu B., Li X., Pang Y. Influence of temperature on hydrolysis acidification of food waste. <em>Procedia Environmental Sciences</em> 2012:16:85–94. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.proenv.2012.10.012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.proenv.2012.10.012</a>">https://doi.org/10.1016/j.proenv.2012.10.012</ext-link>
  36. Kim J. S., Lee Y., Torget R. W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. In <em>Twenty-Second Symposium on Biotechnology for Fuels and Chemicals</em> 2001. Springer, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-1-4612-0217-2_28" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4612-0217-2_28</a>">https://doi.org/10.1007/978-1-4612-0217-2_28</ext-link>
  37. Krall S. M., McFeeters R. F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. <em>Journal of Agricultural and food Chemistry</em> 1998:46(4):1311–1315. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/jf970473y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/jf970473y</a>">https://doi.org/10.1021/jf970473y</ext-link>
  38. Duarte A. W. F., Dos Santos J. A., Vianna M. V., Vieira J. M. F., Mallagutti V. H., Inforsato F. J., Wentzel L. C. P., Lario L. D., Rodrigues A., Pagnocca F. C. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. <em>Critical Reviews in Biotechnology</em> 2018:38(4):600–619. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/07388551.2017.1379468" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/07388551.2017.1379468</a>">https://doi.org/10.1080/07388551.2017.1379468</ext-link>
  39. Maheshwari R., Bharadwaj G., Bhat M. K. Thermophilic Fungi: Their Physiology and Enzymes. <em>Microbiology and Molecular Biology Reviews</em> 2000:64(3):461–488. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1128/mmbr.64.3.461-488.2000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mmbr.64.3.461-488.2000</a>">https://doi.org/10.1128/mmbr.64.3.461-488.2000</ext-link>
  40. Kües U. Fungal enzymes for environmental management. <em>Current Opinion in Biotechnology</em> 2015:33:268–278. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.copbio.2015.03.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.copbio.2015.03.006</a>">https://doi.org/10.1016/j.copbio.2015.03.006</ext-link>
  41. Rivers D. B., Gracheck S. J., Woodford L. C., Emert G. H. Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. <em>Biotechnol. Bioeng</em>. 1984:26(7). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/bit.260260727" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/bit.260260727</a>">https://doi.org/10.1002/bit.260260727</ext-link>
  42. Rafiei V., VélëzH., TzelepisG. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence<em>. International Journal of Molecular Sciences</em> 2021:22(17):9359. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms22179359" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms22179359</a>">https://doi.org/10.3390/ijms22179359</ext-link>
  43. Shankar A., Jain K., Kuhad R., Sharma K. Comparison of lignocellulosic enzymes and CAZymes between ascomycetes (<em>Trichoderma</em>) and basidiomycetes (<em>Ganoderma</em>) species: a proteomic approach. <em>Zeitschrift für Naturforschung C</em> 2023. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/znc-2023-0125" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/znc-2023-0125</a>">https://doi.org/10.1515/znc-2023-0125</ext-link>
  44. Martinez D. <em>et al.</em>, Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)<em>. Nature Biotechnology</em> 2008:26(5):553–560.
  45. Yao C., Sun N., Gao W., Sun Y., Zhang J., Liu H., Zhong Y. Overexpression of a novel vacuolar serine proteaseencoding gene (spt1) to enhance cellulase production in <em>Trichoderma reesei. Fermentation</em> 2023:9(2):191. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/fermentation9020191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/fermentation9020191</a>">https://doi.org/10.3390/fermentation9020191</ext-link>
  46. Beygmoradi A., Homaei A., Hemmati R., Fernandes P. Recombinant protein expression: challenges in production and folding related matters. <em>International Journal of Biological Macromolecules</em> 2023:233:123407. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijbiomac.2023.123407" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijbiomac.2023.123407</a>">https://doi.org/10.1016/j.ijbiomac.2023.123407</ext-link>
  47. İncir İ., Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production<em>. Protein Expression and Purification</em> 2024:219:106463. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.pep.2024.106463" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.pep.2024.106463</a>">https://doi.org/10.1016/j.pep.2024.106463</ext-link>
  48. Dixit Y., Yadav P., Sharma A. K., Pandey P., Kuila A. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. <em>Renewable and Sustainable Energy Reviews</em> 2023:187:113772. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2023.113772" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2023.113772</a>">https://doi.org/10.1016/j.rser.2023.113772</ext-link>
  49. Gomes A. M. V, Carmo T. S., Carvalho L. S., Bahia F. M., Skorupa N. S. Comparison of yeasts as hosts for recombinant protein production. <em>Microorganisms</em> 2018:6(2):38. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/microorganisms6020038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/microorganisms6020038</a>">https://doi.org/10.3390/microorganisms6020038</ext-link>
  50. De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. <em>Biotechnology Advances</em> 2023:64:108121. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biotechadv.2023.108121" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biotechadv.2023.108121</a>">https://doi.org/10.1016/j.biotechadv.2023.108121</ext-link>
  51. Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. Comparative analysis of the <em>Trichoderma reesei</em> transcriptome during growth on the cellulase inducing substrates wheat straw and lactose<em>. Biotechnology for biofuels</em> 2013:6:1–14. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/1754-6834-6-127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/1754-6834-6-127</a>">https://doi.org/10.1186/1754-6834-6-127</ext-link>
  52. Arntzen M. Ø., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. <em>Scientific Reports</em> 2020:10(1):20267. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41598-020-75217-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41598-020-75217-z</a>">https://doi.org/10.1038/s41598-020-75217-z</ext-link>
  53. Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., J Detter C., Larimer F., Coutinho P. M., Henrissat B., Berka R., Cullen D., Rokhsar D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78<em>. Nature biotechnology</em> 2004:22(6):695–700. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/nbt967" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nbt967</a>">https://doi.org/10.1038/nbt967</ext-link>
  54. Kumar R., Verma D., Sharma S., Satyanarayana T. Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana T., Deshmukh S. K. (eds) <em>Fungi and Fungal Products in Human Welfare and Biotechnology</em> 2023:465–491. Springer, Singapore. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-981-19-8853-0_16" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-981-19-8853-0_16</a>">https://doi.org/10.1007/978-981-19-8853-0_16</ext-link>
  55. Mohammad I. E., Syed S., Darukamalli M. R., Alapati K. S. Review on Thermozymes Produced by Thermophilic Fungi: A Gold Mine for Industrial Applications. <em>European Journal of Biology and Biotechnology</em> 2023:4(1):1–5. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.24018/ejbio.2023.4.1.438" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.24018/ejbio.2023.4.1.438</a>">https://doi.org/10.24018/ejbio.2023.4.1.438</ext-link>
  56. Amin F., Asad S. A., Nazli Z.-i-H., Kalsoom U., Bhatti H. N., Bilal M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from <em>Penicillium paxilli. Biomass Conversion and Biorefinery</em> 2023:13(14):13181–13196. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-022-02559-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-022-02559-1</a>">https://doi.org/10.1007/s13399-022-02559-1</ext-link>
  57. Rosgaard L., Pedersen S., Cherry J. R., Harris P., Meyer A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. <em>Biotechnology Progress</em> 2006:22(2):493–498. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/bp050361o" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/bp050361o</a>">https://doi.org/10.1021/bp050361o</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0040 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 510 - 526
Submitted on: Apr 24, 2024
Accepted on: Sep 14, 2024
Published on: Oct 26, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Melania Pilz, Nicolò Castellan, Fosca Conti, Farah Qoura, Thomas Brück, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.