Have a personal or library account? Click to login
Mechanical Vapor Compression Desalination Process: Approaches to Optimize Compressor’s Consumption for Brine Valorization Cover

Mechanical Vapor Compression Desalination Process: Approaches to Optimize Compressor’s Consumption for Brine Valorization

Open Access
|Oct 2024

References

  1. United Nations. UN World Water Development Report 2021. Valuing Water. UNESCO. [Online]. [Accessed 27.05.2022]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://unesdoc.unesco.org/ark:/48223/pf0000375724">https://unesdoc.unesco.org/ark:/48223/pf0000375724</ext-link>
  2. United Nations. Goal 6, Ensure availability and sustainable management of water and sanitation for all. [Online]. [Accessed 27.05.2022]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://sdgs.un.org/goals/goal6">https://sdgs.un.org/goals/goal6</ext-link>
  3. United Nations Sustainable Development. Water and Sanitation. Accessed: Feb. 21, 2024. [Online]. [Accessed 21.02.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.un.org/sustainabledevelopment/water-and-sanitation/">https://www.un.org/sustainabledevelopment/water-and-sanitation/</ext-link>
  4. Kucera J. Desalination: Water from Water, 2<sup>nd</sup> Edition. Scrivener Publishing LLC. 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9781118904855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9781118904855</a>">https://doi.org/10.1002/9781118904855</ext-link>
  5. Alawad S. M., Mansour R. B., Al-Sulaiman F. A., Rehman S. Renewable energy systems for water desalination applications: A comprehensive review. <em>Energy Conversion and Management</em> 2023:286:117035. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2023.117035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2023.117035</a>">https://doi.org/10.1016/j.enconman.2023.117035</ext-link>
  6. Al-Saidi M., Saadaoui I., Ben-HamadouR. Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues. <em>Water Resources and Industry</em> 2023:30:100225. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.wri.2023.100225" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.wri.2023.100225</a>">https://doi.org/10.1016/j.wri.2023.100225</ext-link>
  7. Charisiadis C. Brine Zero Liquid Discharge (ZLD) Fundamentals and Design; A guide to the basic conceptualization of the ZLD/MLD process design and the relative technologies involved. Preprint. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.13140/RG.2.2.19645.31205" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.13140/RG.2.2.19645.31205</a>">https://doi.org/10.13140/RG.2.2.19645.31205</ext-link>
  8. Aly N. H., El-Fiqi A. K. Mechanical vapor compression desalination systems – A case study. <em>Desalination</em> 2003:158(1–3). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0011-9164(03)00444-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0011-9164(03)00444-2</a>">https://doi.org/10.1016/S0011-9164(03)00444-2</ext-link>
  9. LIFE Desirows. Life Desirows (LIFE19ENV/ES/00447). [Online]. [Accessed: 15.02.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://lifedesirows.eu/">https://lifedesirows.eu/</ext-link>
  10. Han D., He W. F., Yue C., Pu W. H. Study on desalination of zero-emission system based on mechanical vapor compression. <em>Applied Energy</em> 2017:185:1490–1496. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2015.12.061" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2015.12.061</a>">https://doi.org/10.1016/j.apenergy.2015.12.061</ext-link>
  11. Ortega-Delgado B., García-Rodríguez L., Alarcón-Padilla D. C. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. <em>Desalination and Water Treatment</em> 2017:97:94–108. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5004/dwt.2017.21679" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5004/dwt.2017.21679</a>">https://doi.org/10.5004/dwt.2017.21679</ext-link>
  12. Sheta M., Elwardany A., Ookawara S., Hassan H. Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors. <em>JES</em> 2023:7(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.30521/jes.1160462" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.30521/jes.1160462</a>">https://doi.org/10.30521/jes.1160462</ext-link>
  13. Wood J. E., Silverman J., Galanti B., Biton E. Modelling the distributions of desalination brines from multiple sources along the Mediterranean coast of Israel. <em>Water Research</em> 2020:173:115555. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.watres.2020.115555" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.watres.2020.115555</a>">https://doi.org/10.1016/j.watres.2020.115555</ext-link>
  14. El-Khatib K. M., Abd El-Hamid A. S., Eissa A. H., Khedr M. A. Transient model, simulation and control of a single-effect mechanical vapour compressi on (SEMVC) desalination system. <em>Desalination</em> 2004:166:157–165. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.desal.2004.06.070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.desal.2004.06.070</a>">https://doi.org/10.1016/j.desal.2004.06.070</ext-link>
  15. Farahat M. A., Fath H. E. S., El-Sharkawy I. I., Ookawara S., Ahmed M. Energy/exergy analysis of solar driven mechanical vapor compression desalination system with nano-filtration pretreatment. <em>Desalination</em> 2021:509:115078. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.desal.2021.115078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.desal.2021.115078</a>">https://doi.org/10.1016/j.desal.2021.115078</ext-link>
  16. TRNSYS. TRNSYS: Transient System Simulation Tool. Fortran. Universisty of Wisconsin. [Online]. [Accessed: 15.02.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.trnsys.com/index.html">http://www.trnsys.com/index.html</ext-link>
  17. Aybar H. S. Analysis of a mechanical vapor compression desalination system. <em>Desalination</em> 2002:142(2):181–186. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0011-9164(01)00437-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0011-9164(01)00437-4</a>">https://doi.org/10.1016/S0011-9164(01)00437-4</ext-link>
  18. Helal A. M., Al-Malek S. A. Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE. <em>Desalination</em> 2006:197(1–3):273–300. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.desal.2006.01.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.desal.2006.01.021</a>">https://doi.org/10.1016/j.desal.2006.01.021</ext-link>
  19. Tong T., Elimelech M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. <em>Environmental Science and Technology</em> 2016:50(13):6846–6855. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.est.6b01000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.est.6b01000</a>">https://doi.org/10.1021/acs.est.6b01000</ext-link>
  20. Pistocchi A., Bleninger T., Dorati C. Screening the hurdles to sea disposal of desalination brine around the Mediterranean. <em>Desalination</em> 2020:491:114570. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.desal.2020.114570" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.desal.2020.114570</a>">https://doi.org/10.1016/j.desal.2020.114570</ext-link>
  21. Panagopoulos A. Brine management (saline water &amp; wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD &amp; ZLD) desalination systems. <em>Chemical Engineering and Processing – Process Intensification</em> 2022:176:108944. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cep.2022.108944" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cep.2022.108944</a>">https://doi.org/10.1016/j.cep.2022.108944</ext-link>
  22. Millero F. J., Feistel R., Wright D. G., McDougall T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. <em>Deep Sea Research Part I: Oceanographic Research Papers</em> 2008:55(1):50–72. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.dsr.2007.10.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.dsr.2007.10.001</a>">https://doi.org/10.1016/j.dsr.2007.10.001</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0037 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 477 - 489
Submitted on: Mar 30, 2024
Accepted on: Sep 23, 2024
Published on: Oct 12, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Pablo Calleja Cayón, Ieva Pakere, Francisco Vera García, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.