Have a personal or library account? Click to login
Mechanical Vapor Compression Desalination Process: Approaches to Optimize Compressor’s Consumption for Brine Valorization Cover

Mechanical Vapor Compression Desalination Process: Approaches to Optimize Compressor’s Consumption for Brine Valorization

Open Access
|Oct 2024

References

  1. United Nations. UN World Water Development Report 2021. Valuing Water. UNESCO. [Online]. [Accessed 27.05.2022]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000375724
  2. United Nations. Goal 6, Ensure availability and sustainable management of water and sanitation for all. [Online]. [Accessed 27.05.2022]. Available: https://sdgs.un.org/goals/goal6
  3. United Nations Sustainable Development. Water and Sanitation. Accessed: Feb. 21, 2024. [Online]. [Accessed 21.02.2024]. Available: https://www.un.org/sustainabledevelopment/water-and-sanitation/
  4. Kucera J. Desalination: Water from Water, 2nd Edition. Scrivener Publishing LLC. 2014. https://doi.org/10.1002/9781118904855
  5. Alawad S. M., Mansour R. B., Al-Sulaiman F. A., Rehman S. Renewable energy systems for water desalination applications: A comprehensive review. Energy Conversion and Management 2023:286:117035. https://doi.org/10.1016/j.enconman.2023.117035
  6. Al-Saidi M., Saadaoui I., Ben-HamadouR. Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues. Water Resources and Industry 2023:30:100225. https://doi.org/10.1016/j.wri.2023.100225
  7. Charisiadis C. Brine Zero Liquid Discharge (ZLD) Fundamentals and Design; A guide to the basic conceptualization of the ZLD/MLD process design and the relative technologies involved. Preprint. https://doi.org/10.13140/RG.2.2.19645.31205
  8. Aly N. H., El-Fiqi A. K. Mechanical vapor compression desalination systems – A case study. Desalination 2003:158(1–3). https://doi.org/10.1016/S0011-9164(03)00444-2
  9. LIFE Desirows. Life Desirows (LIFE19ENV/ES/00447). [Online]. [Accessed: 15.02.2024]. Available: https://lifedesirows.eu/
  10. Han D., He W. F., Yue C., Pu W. H. Study on desalination of zero-emission system based on mechanical vapor compression. Applied Energy 2017:185:1490–1496. https://doi.org/10.1016/j.apenergy.2015.12.061
  11. Ortega-Delgado B., García-Rodríguez L., Alarcón-Padilla D. C. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalination and Water Treatment 2017:97:94–108. https://doi.org/10.5004/dwt.2017.21679
  12. Sheta M., Elwardany A., Ookawara S., Hassan H. Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors. JES 2023:7(1). https://doi.org/10.30521/jes.1160462
  13. Wood J. E., Silverman J., Galanti B., Biton E. Modelling the distributions of desalination brines from multiple sources along the Mediterranean coast of Israel. Water Research 2020:173:115555. https://doi.org/10.1016/j.watres.2020.115555
  14. El-Khatib K. M., Abd El-Hamid A. S., Eissa A. H., Khedr M. A. Transient model, simulation and control of a single-effect mechanical vapour compressi on (SEMVC) desalination system. Desalination 2004:166:157–165. https://doi.org/10.1016/j.desal.2004.06.070
  15. Farahat M. A., Fath H. E. S., El-Sharkawy I. I., Ookawara S., Ahmed M. Energy/exergy analysis of solar driven mechanical vapor compression desalination system with nano-filtration pretreatment. Desalination 2021:509:115078. https://doi.org/10.1016/j.desal.2021.115078
  16. TRNSYS. TRNSYS: Transient System Simulation Tool. Fortran. Universisty of Wisconsin. [Online]. [Accessed: 15.02.2024]. Available: http://www.trnsys.com/index.html
  17. Aybar H. S. Analysis of a mechanical vapor compression desalination system. Desalination 2002:142(2):181–186. https://doi.org/10.1016/S0011-9164(01)00437-4
  18. Helal A. M., Al-Malek S. A. Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE. Desalination 2006:197(1–3):273–300. https://doi.org/10.1016/j.desal.2006.01.021
  19. Tong T., Elimelech M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environmental Science and Technology 2016:50(13):6846–6855. https://doi.org/10.1021/acs.est.6b01000
  20. Pistocchi A., Bleninger T., Dorati C. Screening the hurdles to sea disposal of desalination brine around the Mediterranean. Desalination 2020:491:114570. https://doi.org/10.1016/j.desal.2020.114570
  21. Panagopoulos A. Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chemical Engineering and Processing – Process Intensification 2022:176:108944. https://doi.org/10.1016/j.cep.2022.108944
  22. Millero F. J., Feistel R., Wright D. G., McDougall T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Research Part I: Oceanographic Research Papers 2008:55(1):50–72. https://doi.org/10.1016/j.dsr.2007.10.001
DOI: https://doi.org/10.2478/rtuect-2024-0037 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 477 - 489
Submitted on: Mar 30, 2024
Accepted on: Sep 23, 2024
Published on: Oct 12, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Pablo Calleja Cayón, Ieva Pakere, Francisco Vera García, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.