Have a personal or library account? Click to login
Optimizing External-Heating Gasifiers for Enhanced Efficiency: A Synergistic Approach with Taguchi’s Method in Support of Climate Change Mitigation Goals Cover

Optimizing External-Heating Gasifiers for Enhanced Efficiency: A Synergistic Approach with Taguchi’s Method in Support of Climate Change Mitigation Goals

Open Access
|Oct 2024

References

  1. Full report – Statistical Review of World Energy 2021 – B. [Online]. [Accessed 15.04.2024]. Available: https://www.bp.com/
  2. A New Report from IPCC – Climate Change Science. [Online]. [Accessed 15.04.2024]. Available: https://talkofthecities.iclei.org/
  3. Energy – accelerating the transition from coal to clean power. [Online]. [Accessed 15.04.2024]. Available: https://ukcop26.org/energy/
  4. Hisatomi T., Domen K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis 2019:2:387–399. https://doi.org/10.1038/s41929-019-0242-6
  5. Rieksta M., Zarins E., Bazbauers G. Potential Role of Green Hydrogen in Decarbonization of District Heating Systems: A Review. Environmental and Climate Technologies 2023:27(1):545–558. https://doi.org/10.2478/rtuect-2023-0040
  6. Akhlaghi N., Najafpour-Darzi G. A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy 2020:45(43):22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182
  7. Mohammed H., Al-Othman A., Nancarrow P., Tawalbeh M., Assad M. E.-H. Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency. Energy 2019:172:207–219. https://doi.org/10.1016/j.energy.2019.01.105
  8. Satari B., Karimi K., Kumar R. Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable energy & fuels 2019:11–62. https://doi.org/10.1039/C8SE00287H
  9. Kowalczyk T., Badur J., Bryk M. Energy and exergy analysis of hydrogen production combined with electric energy generation in a nuclear cogeneration cycle. Energy Conversion and Management 2019:198:111805. https://doi.org/10.1016/j.enconman.2019.111805
  10. Arabloo M., BahadoriA., Ghiasi M. M., Lee M., Zendehboudi A. A. S. A novel modeling approach to optimize oxygen-steam ratios in coal gasification process. Fuel 2015:153:1–5. https://doi.org/10.1016/j.fuel.2015.02.083
  11. Mularski J., Pawlak-Kruczek H., Modlinski N. A review of recent studies of the CFD modelling of coal gasification in entrained flow gasifiers, covering devolatilization, gas-phase reactions, surface reactions, models and kinetics. Fuel 2020:271:117620. https://doi.org/10.1016/j.fuel.2020.117620
  12. Pandey D. S., Pan I., Das S., Leahy J. J., Kwapinski W. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresource Technology 2015:179:524–533. https://doi.org/10.1016/j.biortech.2014.12.048
  13. Sadasivam S., Zagorščak R., Thomas H. R., Kapusta K. Experimental study of methane-oriented gasification of semianthracite and bituminous coals using oxygen and steam in the context of underground coal gasification (UCG): Effects of pressure, temperature, gasification reactant supply rates and coal rank. Fuel 2020:268:117330. https://doi.org/10.1016/j.fuel.2020.117330
  14. Kutnyi B., Pavlenko A., Cherednikova O. Theoretical Foundations of Gas Hydrate Synthesis Intensification. Environmental and Climate Technologies 2023:27(1):666–682. https://doi.org/10.2478/rtuect-2023-0049
  15. Etghani M. M., Baboli S. A. H. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Applied Thermal Engineering 2017:121:294–301. https://doi.org/10.1016/j.applthermaleng.2017.04.074
  16. Li C., Guan Y., Feng Y., Jiang C., Zhen S., Su X. Comparison of influencing factors and level optimization for heating through deep-buried pipe based on Taguchi method. Geothermics 2021:91:102045. https://doi.org/10.1016/j.geothermics.2021.102045
  17. Pandey N., Murugesan K., Thomas H. R. Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept. Applied Energy 2017:190:421–438. https://doi.org/10.1016/j.apenergy.2016.12.154
  18. Qi X., Chen G., Li Y., Cheng X., Li C. Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives. Engineering 2019:5(4):721–729. https://doi.org/10.1016/j.eng.2019.04.012
  19. Zhang Z., Liu S., Gao W., Xu J., Zhu S. An enhanced multi-objective evolutionary optimization algorithm with inverse model. Information Sciences 2020:530:128–147. https://doi.org/10.1016/j.ins.2020.03.111
  20. Jin J., Feng F., Na W., Yan S., Liu W., Zhu L., Zhang Q., Recent advances in neural network‐based inverse modeling techniques for microwave applications. International Journal of Numerical Modeling: Electronic Networks, Devices and Fields 2020:33(6):e2732. https://doi.org/10.1002/jnm.2732
  21. Luca A., Ragazzi M., Tubino M., Schiavon M. Criteria for Enhanced Monitoring and Control Plans for a Waste Gasification Plant. Environmental and Climate Technologies 2023:27(1):570–580. https://doi.org/10.2478/rtuect-2023-0042
  22. Zhuk H., Ivanov Y., Onopa L., Krushnevych S., Soltanibereshne M. Effectiveness of Water-Amine Combined Process for CO2 Extraction from Biogas. Environmental and Climate Technologies 2024:28(1):135–148. https://doi.org/10.2478/rtuect-2024-0012
  23. Serbin S. I., Matveev I. B. Theoretical Investigations of the Working Processes in a Plasma Coal Gasification System. IEEE Transactions on Plasma Science 2010:38(12):3300–3305. https://doi.org/10.1109/TPS.2010.2086495
  24. Laoun B., Belhamel M. A Three Dimensional Model to Simulate Power Performance of a Single Solid Oxide Fuel Cell. 2nd International Symposium on Environment-Friendly Energies and Applications (EFEA). June, 2012. https://doi.org/10.1109/EFEA.2012.6294070
  25. Lakshmi T. V. V. S., Geethanjali P., Krishna P. S. Mathematical modelling of solid oxide fuel cell using Matlab/Simulink. International Conference on Microelectronics, Communication and Renewable Energy (ICMiCR-2013). 2013. https://doi.org/10.1109/AICERA-ICMiCR.2013.6576016
  26. Chen W. H., Chen C. J., Hung C. I. Taguchi approach for co-gasification optimization of torrefied biomass and coal, Bioresource Technology 2013:144:615–622. https://doi.org/10.1016/j.biortech.2013.07.016
  27. Alzoubi M. A., Sasmito A. P. Thermal performance optimization of a bayonet tube heat exchanger. Applied Thermal Engineering 2017:111:232–247. https://doi.org/10.1016/j.applthermaleng.2016.09.052
  28. Etghani M. M., Baboli S. A. H. Numerical investigation and optimization of heat transfer and exergy loss in shell and helical tube heat exchanger. Applied Thermal Engineering 2017:121:294–301. https://doi.org/10.1016/j.applthermaleng.2017.04.074
DOI: https://doi.org/10.2478/rtuect-2024-0036 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 464 - 476
Submitted on: Mar 21, 2024
Accepted on: Sep 25, 2024
Published on: Oct 8, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Chung-Neng Huang, Yu-Chang Yen, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.