Have a personal or library account? Click to login
Study of Moulding Sands to Create Three-Layer Magnesium Concrete Cover

Study of Moulding Sands to Create Three-Layer Magnesium Concrete

By: Olga Miryuk  
Open Access
|Oct 2024

References

  1. Laasri I. A., Outzourhit A., Mghazli M. O. Multi-parameter analysis of different building forms in a semi-arid climate: Effect of building construction and phase change materials. Solar Energy 2023:250:220–240. https://doi.org/10.1016/j.solener.2022.12.050
  2. Pérez-García A., Víllora A. G., Pérez G. G. Building’s eco-efficiency improvements based on reinforced concrete multilayer structural panels. Energy and Buildings 2014:85:1–11. https://doi.org/10.1016/j.enbuild.2014.08.018
  3. Essakali N., Charai M., Kaitouni S. I., Laasri I. A., Mghazli M. O., Cherkaoui M., Pfafferott J., Ukjoo S. Energy efficiency and hygrothermal performance of hemp clay walls for Moroccan residential buildings: An integrated labscale, in-situ and simulation-based assessment. Applied Energy 2023:352:121967. https://doi.org/10.1016/j.apenergy.2023.121967
  4. Annaba K., Wardi F. Z. E., Ibaaz K., Bouyahyaoui A., Cherkaoui M., Ouaki B., Oubenmoh S. Thermomechanical characterization and thermal simulation of a new multilayer mortar and a light-weight pozzolanic concrete for building energy efficiency. Construction and Building Materials 2022:346:128479. https://doi.org/10.1016/j.conbuildmat.2022.128479
  5. Ma X., Wang Y., Zhai X., Zhi X., Zhou H. Experimental and analytical studies on a novel steel-PU foam-concretetube multilayer energy absorbing panel under impact loading by a cylinder head. International Journal of Impact Engineering 2023:180:104721. https://doi.org/10.1016/j.ijimpeng.2023.104721
  6. Wardi F. Z., Cherki A., Mounir S., Khabbazi A., Maaloufa Y. Thermal characterization of a new multilayer building material based on clay, cork and cement mortar. Energy Procedia 2019:157:480–491. https://doi.org/10.1016/j.egypro.2018.11.212
  7. Abu-Jdayil B., Mourad A.-H., Hittini W., Hassan M., Hameedi S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials 2019:214:709–735. https://doi.org/10.1016/j.conbuildmat.2019.04.102
  8. Atbir A., Khabbazi A., Cherkaoui M., Ibaaz K., Wardi F. Z., Chebli S. Improvement of thermomechanical properties of porous plaster reinforced with a network of Morocco sheep wool skeletons for Energy efficiency. Building and Environment 2023:234:110171. https://doi.org/10.1016/j.buildenv.2023.110171
  9. Zhang T., Yuan J., Pang H., Huang Z., Guo Y., Wei J., Yu Q. UHPC-XPS insulation composite board reinforced by glass fiber mesh: Effect of structural design on the heat transfer, mechanical properties and impact resistance. Journal of Building Engineering 2023:75:106935. https://doi.org/10.1016/j.jobe.2023.106935
  10. Adilkhanova I., Memon S.A., Kim J., Sheriyev A. A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy 2021:217:119390. https://doi.org/10.1016/j.energy.2020.119390
  11. Wu D., Rahim M., Ganaoui M., Bennacer R., Liu B. Multilayer assembly of phase change material and bio-based concrete: A passive envelope to improve the energy and hygrothermal performance of buildings. Energy Conversion and Management 2022:257:115454. https://doi.org/10.1016/j.enconman.2022.115454
  12. Pedroso M., Silvestre J.D., Flores-Colen I., Gomes M.G. Environmental impact of wall multilayer coating systems containing aerogel-based fibre-enhanced thermal renders. Journal of Building Engineering 2023:76:107322. https://doi.org/10.1016/j.jobe.2023.107322
  13. Korol E. A., Tho V. D. Bond strength between concrete layers of three-layer concrete structures. Materials Science and Engineering 2020:775:012115. https://doi.org/10.1088/1757-899X/775/1/012115
  14. Javid A. A. S., Ghoddousi P., Amiri G. G., Donyadideh K. A new photogrammetry method to study the relationship between thixotropy and bond strength of multi-layers casting of self-consolidating concrete. Construction and Building Materials 2019:204:530–540. https://doi.org/10.1016/j.conbuildmat.2019.01.204
  15. Dybeł P., Kucharska M. Effect of multilayer casting technology of self-compacting concrete slabs on the load-bearing capacity of a layer-to-layer joint. Journal of Building Engineering 2023:64:105655. https://doi.org/10.1016/j.jobe.2022.105655
  16. Maier M., Lees J. Interlayer fracture behaviour of functionally layered concrete. Engineering Fracture Mechanics 2022:271:108672. https://doi.org/10.1016/j.engfracmech.2022.108672
  17. Megid W. A., Khayat K. H. Effect of structural buildup at rest of self-consolidating concrete on mechanical and transport properties of multilayer casting. Construction and Building Materials 2019:196:626–636. https://doi.org/10.1016/j.conbuildmat.2018.11.112
  18. Korol E. A, Vu Dinh Tho. Geometric and physio-mechanical characteristics of the contact layer area of multilayer reinforced concrete structures. Materials Science and Engineering 2021:1015:012034. https://doi.org/10.1088/1757-899X/1015/1/012034
  19. Hur K., Lee H. J., Wi S., Chang S. J., Kim S. Barrier effect of insulation against harmful chemical substances according to the wall surface construction of layered building materials. Construction and Building Materials 2023:368:130430. https://doi.org/10.1016/j.conbuildmat.2023.130430
  20. Yuan Q., Chen R., Zuo S., Huang T., Zhang K., Mei D. Bonding performance between distinct layers of cast-in-situ self-compacting concrete and ordinary concrete. Construction and Building Materials 2023:373:130892. https://doi.org/10.1016/j.conbuildmat.2023.130892
  21. Torelli G., Fernández M. G., Lees J. M. Functionally graded concrete: design objectives, production techniques and analysis methods for layered and continuously graded elements. Construction and Building Materials 2020:242:118040. https://doi.org/10.1016/j.conbuildmat.2020.118040
  22. Tsybin N., Turusov R., Andreev V., Kolesnikov A. Stress-strain state of a three-layer rod. Comparison of the results of analytical and numerical calculations with the experiment. MATEC Web of Conferences 2018:196:01057. https://doi.org/10.1051/matecconf/201819601057
  23. Qian P., Xu Q. Experimental investigation on properties of interface between concrete layers. Construction and Building Materials 2018:174:120–129. https://doi.org/10.1016/j.conbuildmat.2018.04.114
  24. Liu S., He Z., Hu L. Interface adhesion of fresh-on-fresh cast ultra-high performance concrete–normal concrete: Effect and mechanism of pour delay and ambient humidity. Journal of Building Engineering 2023:78:107679. https://doi.org/10.1016/j.jobe.2023.107679
  25. Miryuk O., Oleinik A., Akhmedov K. Computer modeling of a composite material with porous filler. Eurasian Physical Technical Journal 2023:20:56–64. https://doi.org/10.31489/2023NO1/56-64
  26. Miryuk O. Magnesia composites formation as a result of furniture production wood waste processing. Environmental and Climate Technologies 2022:26(1):836–847. https://doi.org/10.2478/rtuect-2022-0063
DOI: https://doi.org/10.2478/rtuect-2024-0035 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 453 - 463
Submitted on: Mar 12, 2024
Accepted on: Sep 24, 2024
Published on: Oct 8, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Olga Miryuk, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.