References
- Nanda S., Golemi-Kotra D., McDermott J. C., Dalai A. K., Gökalp I., Kozinski J. A. Fermentative production of butanol: Perspectives on synthetic biology. N Biotechnol 2017:37:210–221. https://doi.org/10.1016/j.nbt.2017.02.006
- Kolesinska B., Fraczyk J., Binczarski M., Modelska M., Berlowska J., Dziugan P., Antolak H., Kaminski Z. J., Witonska I. A., Kregiel D. Butanol synthesis routes for biofuel production: Trends and perspectives. Materials 2019:12(3). https://doi.org/10.3390/ma12030350
- Visioli L. J., Enzweiler H., Kuhn R. C., Schwaab M., Mazutti M. A. Recent advances on biobutanol production. Sustainable Chemical Processes 2014:2:Art15. https://doi.org/10.1186/2043-7129-2-15
- Buehler E. A., Mesbah A. Kinetic study of acetone-butanol-ethanol fermentation in continuous culture. PLoS One 2016:11(8):e0158243. https://doi.org/10.1371/journal.pone.0158243
- Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998:49:639–648. https://doi.org/10.1007/s002530051226
- Qureshi N., Lin X., Liu S., Saha B. C., Mariano A. P., Polaina J., Ezeji T. C., Friedl A., Maddox I. S., Klasson K. T., Dien B. S., Singh V. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation 2020:6(2). https://doi.org/10.3390/FERMENTATION6020058
- German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-14923
- Carrié M., Velly H., Ben-Chaabane F., Gabelle J. C. Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochem Eng J 2022:180:108355. https://doi.org/10.1016/J.BEJ.2022.108355
- Survase S. A., Jurgens G., Van Heiningen A., Granström T. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 2011:91:1305–1313. https://doi.org/10.1007/s00253-011-3322-3
- Cebreiros F., Ferrari M. D., Lareo C. Cellulose hydrolysis and IBE fermentation of eucalyptus sawdust for enhanced biobutanol production by Clostridium beijerinckii DSM 6423. Ind Crops Prod 2019:134:50–61. https://doi.org/10.1016/j.indcrop.2019.03.059
- German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-6423
- Clostridium acetobutylicum 2291, W | Type strain | DSM 792, ATCC 824, VKM B-1787, CCUG 42182 C, LMG 5710, CECT 508, IFO 13948, JCM 1419, BCRC 10639, CCUG 42182, IAM 19013, KCTC 1790, NBRC 13948, NCIMB 8052, NRRL B-527 | BacDiveID:2529 n.d. [Online]. [Accessed: 10.07.2023]. Available: https://bacdive.dsmz.de/strain/2529
- Zetty-Arenas A. M., Alves R. F., Portela C. A. F., Mariano A. P., Basso T. O., Tovar L. P., Filho R. M., Freitas S. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 2019:126:190–198. https://doi.org/10.1016/j.biombioe.2019.05.011
- Lütke-Eversloh T., Bahl H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Curr Opin Biotechnol 2011:22(5):634–647. https://doi.org/10.1016/j.copbio.2011.01.011
- Vees C. A., Neuendorf C. S., Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020:47(9-10):753–787. https://doi.org/10.1007/s10295-020-02296-2
- Jiang M., Chen J. N., He A. Y., Wu H., Kong X. P., Liu J. L., Lin C.-y., Chen Wu-F., Chen P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry 2014:49(8):1238–1244. https://doi.org/10.1016/j.procbio.2014.04.017
- Alam S., Stevens D., Bajpai R. Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. Journal of Industrial Microbiology 1988:2:359–364.
- Drahokoupil M., Patáková P. Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii. Czech Journal of Food Sciences 2020:38(3):185–191. https://doi.org/10.17221/95/2020-CJFS
- Al-Shorgani N. K. N., Shukor H., Abdeshahian P., Mohd Nazir M. Y., Kalil M. S., Hamid A. A., Yusoff W. M. W. Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation. Biocatal Agric Biotechnol 2015:4(2):244–249. https://doi.org/10.1016/j.bcab.2015.02.004
- Singh V., Singh H., Das D. Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923. Int J Hydrogen Energy 2019:44(49):26905–19. https://doi.org/10.1016/j.ijhydene.2019.08.125
- Ennis B. M., Maddox S. The Effect of pH and Lactose Concentration on Solvent Production from Whey Permeate Using Clostridium acetobutylicum. Biotechnol Bioeng 1987:29(3)329–334. https://doi.org/10.1002/bit.260290306
- Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W., Hamid A. A. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018:25(2):339–348. https://doi.org/10.1016/j.sjbs.2017.03.020
- Iyyappan J., Bharathiraja B., Varjani S., PraveenKumar R., Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresour Technol 2022:346:126405. https://doi.org/10.1016/J.BIORTECH.2021.126405
- Shaterzadeh M. J., Ataei S. A. The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2017:39(11):1118–1123. https://doi.org/10.1080/15567036.2017.1297875
- Wang Y., Blaschek H. P. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 2011:102(21):9985–9990. https://doi.org/10.1016/j.biortech.2011.08.038
- Qureshi N., Singh V., Liu S., Ezeji T. C., Saha B. C., Cotta M. A. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 2014:154:222–228. https://doi.org/10.1016/j.biortech.2013.11.080
- Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol 2012:62:1059–1070. https://doi.org/10.1007/s13213-011-0347-x
- Wang P., Chen Y. M., Wang Y., Lee Y. Y., Zong W., Taylor S., McDonald T., Wang Y. Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy 2019:236:551–559. https://doi.org/10.1016/j.apenergy.2018.12.011
- Wang P., Zhang J., Feng J., Wang S., Guo L., Wang Y., Lee Y. Y., Taylor S., McDonald T., Wang Y. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology 2019:281:217–225. https://doi.org/10.1016/j.biortech.2019.02.096
- Yao D, Dong S, Wang P, Chen T, Wang J, Yue Z-B, et al. Robustness of Clostridium saccharoperbutylacetonicum for Acetone-Butanol-Ethanol production: effects of lignocellulosic sugars and inhibitors Running title: Effects of sugars and inhibitors on ABE fermentation. Fuel 2017:208:549–557. https://doi.org/10.1016/j.fuel.2017.07.004
- Welsh F. W., Veliky I. A. The metabolism of lactose by Clostridium acetobutylicum. Biotechnology Letters1986:8:43–46. https://doi.org/10.1007/BF01044400
- Yerushalmi L., Volesky B. Importance of Agitation in Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615
- Ranjan A., Mayank R., Moholkar V. S. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Convers Biorefin 2013:3:143–55. https://doi.org/10.1007/s13399-012-0062-2
- Doremus M. G., Linden J. C., Moreiras A. R. Agitation and Pressure Effects on Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615
- Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. Agronomy Research 2021:19(S1):877–895. https://doi.org/10.15159/AR.21.084