Have a personal or library account? Click to login
Effects of Temperature, pH, and Agitation on Growth and Butanol Production of Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium saccharoperbutylacetonicum Cover

Effects of Temperature, pH, and Agitation on Growth and Butanol Production of Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium saccharoperbutylacetonicum

Open Access
|Feb 2024

References

  1. Nanda S., Golemi-Kotra D., McDermott J. C., Dalai A. K., Gökalp I., Kozinski J. A. Fermentative production of butanol: Perspectives on synthetic biology. <em>N Biotechnol</em> 2017:37:210–221. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.nbt.2017.02.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nbt.2017.02.006</a>">https://doi.org/10.1016/j.nbt.2017.02.006</ext-link>
  2. Kolesinska B., Fraczyk J., Binczarski M., Modelska M., Berlowska J., Dziugan P., Antolak H., Kaminski Z. J., Witonska I. A., Kregiel D. Butanol synthesis routes for biofuel production: Trends and perspectives. <em>Materials</em> 2019:12(3). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma12030350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma12030350</a>">https://doi.org/10.3390/ma12030350</ext-link>
  3. Visioli L. J., Enzweiler H., Kuhn R. C., Schwaab M., Mazutti M. A. Recent advances on biobutanol production. <em>Sustainable Chemical Processes</em> 2014:2:Art15. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/2043-7129-2-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/2043-7129-2-15</a>">https://doi.org/10.1186/2043-7129-2-15</ext-link>
  4. Buehler E. A., Mesbah A. Kinetic study of acetone-butanol-ethanol fermentation in continuous culture. <em>PLoS One</em> 2016:11(8):e0158243. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1371/journal.pone.0158243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0158243</a>">https://doi.org/10.1371/journal.pone.0158243</ext-link>
  5. Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. <em>Appl Microbiol Biotechnol</em> 1998:49:639–648. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s002530051226" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s002530051226</a>">https://doi.org/10.1007/s002530051226</ext-link>
  6. Qureshi N., Lin X., Liu S., Saha B. C., Mariano A. P., Polaina J., Ezeji T. C., Friedl A., Maddox I. S., Klasson K. T., Dien B. S., Singh V. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. <em>Fermentation</em> 2020:6(2). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/FERMENTATION6020058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/FERMENTATION6020058</a>">https://doi.org/10.3390/FERMENTATION6020058</ext-link>
  7. German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.dsmz.de/collection/catalogue/details/culture/DSM-14923">https://www.dsmz.de/collection/catalogue/details/culture/DSM-14923</ext-link>
  8. Carrié M., Velly H., Ben-Chaabane F., Gabelle J. C. Modeling fixed bed bioreactors for isopropanol and butanol production using <em>Clostridium beijerinckii</em> DSM 6423 immobilized on polyurethane foams. <em>Biochem Eng J</em> 2022:180:108355. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.BEJ.2022.108355" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.BEJ.2022.108355</a>">https://doi.org/10.1016/J.BEJ.2022.108355</ext-link>
  9. Survase S. A., Jurgens G., Van Heiningen A., Granström T. Continuous production of isopropanol and butanol using <em>Clostridium beijerinckii</em> DSM 6423. <em>Appl Microbiol Biotechnol</em> 2011:91:1305–1313. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00253-011-3322-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00253-011-3322-3</a>">https://doi.org/10.1007/s00253-011-3322-3</ext-link>
  10. Cebreiros F., Ferrari M. D., Lareo C. Cellulose hydrolysis and IBE fermentation of eucalyptus sawdust for enhanced biobutanol production by <em>Clostridium beijerinckii</em> DSM 6423. <em>Ind Crops Prod</em> 2019:134:50–61. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.indcrop.2019.03.059" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.indcrop.2019.03.059</a>">https://doi.org/10.1016/j.indcrop.2019.03.059</ext-link>
  11. German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.dsmz.de/collection/catalogue/details/culture/DSM-6423">https://www.dsmz.de/collection/catalogue/details/culture/DSM-6423</ext-link>
  12. <em>Clostridium acetobutylicum</em> 2291, W | Type strain | DSM 792, ATCC 824, VKM B-1787, CCUG 42182 C, LMG 5710, CECT 508, IFO 13948, JCM 1419, BCRC 10639, CCUG 42182, IAM 19013, KCTC 1790, NBRC 13948, NCIMB 8052, NRRL B-527 | BacDiveID:2529 n.d. [Online]. [Accessed: 10.07.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://bacdive.dsmz.de/strain/2529">https://bacdive.dsmz.de/strain/2529</ext-link>
  13. Zetty-Arenas A. M., Alves R. F., Portela C. A. F., Mariano A. P., Basso T. O., Tovar L. P., Filho R. M., Freitas S. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. <em>Biomass Bioenergy</em> 2019:126:190–198. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biombioe.2019.05.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biombioe.2019.05.011</a>">https://doi.org/10.1016/j.biombioe.2019.05.011</ext-link>
  14. Lütke-Eversloh T., Bahl H. Metabolic engineering of <em>Clostridium acetobutylicum</em>: Recent advances to improve butanol production. <em>Curr Opin Biotechnol</em> 2011:22(5):634–647. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.copbio.2011.01.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.copbio.2011.01.011</a>">https://doi.org/10.1016/j.copbio.2011.01.011</ext-link>
  15. Vees C. A., Neuendorf C. S., Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. <em>J Ind Microbiol Biotechnol</em> 2020:47(9-10):753–787. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10295-020-02296-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10295-020-02296-2</a>">https://doi.org/10.1007/s10295-020-02296-2</ext-link>
  16. Jiang M., Chen J. N., He A. Y., Wu H., Kong X. P., Liu J. L., Lin C.-y., Chen Wu-F., Chen P. Enhanced acetone/butanol/ethanol production by <em>Clostridium beijerinckii</em> IB4 using pH control strategy. <em>Process Biochemistry</em> 2014:49(8):1238–1244. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.procbio.2014.04.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.procbio.2014.04.017</a>">https://doi.org/10.1016/j.procbio.2014.04.017</ext-link>
  17. Alam S., Stevens D., Bajpai R. Production of butyric acid by batch fermentation of cheese whey with <em>Clostridium beijerinckii. Journal of Industrial Microbiology</em> 1988:2:359–364.
  18. Drahokoupil M., Patáková P. Production of butyric acid at constant pH by a solventogenic strain of <em>Clostridium beijerinckii. Czech Journal of Food Sciences</em> 2020:38(3):185–191. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.17221/95/2020-CJFS" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.17221/95/2020-CJFS</a>">https://doi.org/10.17221/95/2020-CJFS</ext-link>
  19. Al-Shorgani N. K. N., Shukor H., Abdeshahian P., Mohd Nazir M. Y., Kalil M. S., Hamid A. A., Yusoff W. M. W. Process optimization of butanol production by <em>Clostridium saccharoperbutylacetonicum</em> N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation. <em>Biocatal Agric Biotechnol</em> 2015:4(2):244–249. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.bcab.2015.02.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.bcab.2015.02.004</a>">https://doi.org/10.1016/j.bcab.2015.02.004</ext-link>
  20. Singh V., Singh H., Das D. Optimization of the medium composition for the improvement of hydrogen and butanol production using <em>Clostridium saccharoperbutylacetonicum</em> DSM 14923. <em>Int J Hydrogen Energy</em> 2019:44(49):26905–19. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijhydene.2019.08.125" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijhydene.2019.08.125</a>">https://doi.org/10.1016/j.ijhydene.2019.08.125</ext-link>
  21. Ennis B. M., Maddox S. The Effect of pH and Lactose Concentration on Solvent Production from Whey Permeate Using <em>Clostridium acetobutylicum. Biotechnol Bioeng</em> 1987:29(3)329–334. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/bit.260290306" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/bit.260290306</a>">https://doi.org/10.1002/bit.260290306</ext-link>
  22. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W., Hamid A. A. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of <em>Clostridium acetobutylicum</em> YM1. <em>Saudi J Biol Sci</em> 2018:25(2):339–348. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.sjbs.2017.03.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sjbs.2017.03.020</a>">https://doi.org/10.1016/j.sjbs.2017.03.020</ext-link>
  23. Iyyappan J., Bharathiraja B., Varjani S., PraveenKumar R., Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using <em>Clostridium acetobutylicum</em> MTCC11274: Media engineering and kinetic analysis. <em>Bioresour Technol</em> 2022:346:126405. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.BIORTECH.2021.126405" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.BIORTECH.2021.126405</a>">https://doi.org/10.1016/J.BIORTECH.2021.126405</ext-link>
  24. Shaterzadeh M. J., Ataei S. A. The effects of temperature, initial pH, and glucose concentration on biohydrogen production from <em>Clostridium acetobutylicum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects</em> 2017:39(11):1118–1123. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/15567036.2017.1297875" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15567036.2017.1297875</a>">https://doi.org/10.1080/15567036.2017.1297875</ext-link>
  25. Wang Y., Blaschek H. P. Optimization of butanol production from tropical maize stalk juice by fermentation with <em>Clostridium beijerinckii</em> NCIMB 8052. <em>Bioresour Technol</em> 2011:102(21):9985–9990. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2011.08.038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2011.08.038</a>">https://doi.org/10.1016/j.biortech.2011.08.038</ext-link>
  26. Qureshi N., Singh V., Liu S., Ezeji T. C., Saha B. C., Cotta M. A. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using <em>Clostridium beijerinckii</em> P260. <em>Bioresour Technol</em> 2014:154:222–228. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2013.11.080" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2013.11.080</a>">https://doi.org/10.1016/j.biortech.2013.11.080</ext-link>
  27. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. Fermentation of sago starch to biobutanol in a batch culture using <em>Clostridium saccharoperbutylacetonicum</em> N1-4 (ATCC 13564). <em>Ann Microbiol</em> 2012:62:1059–1070. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13213-011-0347-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13213-011-0347-x</a>">https://doi.org/10.1007/s13213-011-0347-x</ext-link>
  28. Wang P., Chen Y. M., Wang Y., Lee Y. Y., Zong W., Taylor S., McDonald T., Wang Y. Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with <em>Clostridium saccharoperbutylacetonicum</em> N1-4. <em>Applied Energy</em> 2019:236:551–559. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2018.12.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2018.12.011</a>">https://doi.org/10.1016/j.apenergy.2018.12.011</ext-link>
  29. Wang P., Zhang J., Feng J., Wang S., Guo L., Wang Y., Lee Y. Y., Taylor S., McDonald T., Wang Y. Enhancement of acid re-assimilation and biosolvent production in <em>Clostridium saccharoperbutylacetonicum</em> through metabolic engineering for efficient biofuel production from lignocellulosic biomass. <em>Bioresource Technology</em> 2019:281:217–225. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biortech.2019.02.096" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biortech.2019.02.096</a>">https://doi.org/10.1016/j.biortech.2019.02.096</ext-link>
  30. Yao D, Dong S, Wang P, Chen T, Wang J, Yue Z-B, et al. Robustness of <em>Clostridium saccharoperbutylacetonicum</em> for Acetone-Butanol-Ethanol production: effects of lignocellulosic sugars and inhibitors Running title: Effects of sugars and inhibitors on ABE fermentation. <em>Fuel</em> 2017:208:549–557. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2017.07.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2017.07.004</a>">https://doi.org/10.1016/j.fuel.2017.07.004</ext-link>
  31. Welsh F. W., Veliky I. A. The metabolism of lactose by <em>Clostridium acetobutylicum. Biotechnology Letters</em>1986:8:43–46. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/BF01044400" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/BF01044400</a>">https://doi.org/10.1007/BF01044400</ext-link>
  32. Yerushalmi L., Volesky B. Importance of Agitation in Acetone-Butanol Fermentation. <em>Biotechnol Bioeng</em> 1985:27(6):852–860. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/bit.260270615" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/bit.260270615</a>">https://doi.org/10.1002/bit.260270615</ext-link>
  33. Ranjan A., Mayank R., Moholkar V. S. Process optimization for butanol production from developed rice straw hydrolysate using <em>Clostridium acetobutylicum</em> MTCC 481 strain. <em>Biomass Convers Biorefin</em> 2013:3:143–55. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s13399-012-0062-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s13399-012-0062-2</a>">https://doi.org/10.1007/s13399-012-0062-2</ext-link>
  34. Doremus M. G., Linden J. C., Moreiras A. R. Agitation and Pressure Effects on Acetone-Butanol Fermentation. <em>Biotechnol Bioeng</em> 1985:27(6):852–860. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/bit.260270615" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/bit.260270615</a>">https://doi.org/10.1002/bit.260270615</ext-link>
  35. Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. <em>Agronomy Research</em> 2021:19(S1):877–895. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.15159/AR.21.084" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.15159/AR.21.084</a>">https://doi.org/10.15159/AR.21.084</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 71 - 83
Submitted on: Jul 16, 2023
Accepted on: Nov 6, 2023
Published on: Feb 19, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Linda Feldmane, Svetlana Raita, Indra Berzina, Zane Geiba, Taras Mika, Iveta Kuzmika, Kriss Spalvins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.