Have a personal or library account? Click to login
Effects of Temperature, pH, and Agitation on Growth and Butanol Production of Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium saccharoperbutylacetonicum Cover

Effects of Temperature, pH, and Agitation on Growth and Butanol Production of Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium saccharoperbutylacetonicum

Open Access
|Feb 2024

References

  1. Nanda S., Golemi-Kotra D., McDermott J. C., Dalai A. K., Gökalp I., Kozinski J. A. Fermentative production of butanol: Perspectives on synthetic biology. N Biotechnol 2017:37:210–221. https://doi.org/10.1016/j.nbt.2017.02.006
  2. Kolesinska B., Fraczyk J., Binczarski M., Modelska M., Berlowska J., Dziugan P., Antolak H., Kaminski Z. J., Witonska I. A., Kregiel D. Butanol synthesis routes for biofuel production: Trends and perspectives. Materials 2019:12(3). https://doi.org/10.3390/ma12030350
  3. Visioli L. J., Enzweiler H., Kuhn R. C., Schwaab M., Mazutti M. A. Recent advances on biobutanol production. Sustainable Chemical Processes 2014:2:Art15. https://doi.org/10.1186/2043-7129-2-15
  4. Buehler E. A., Mesbah A. Kinetic study of acetone-butanol-ethanol fermentation in continuous culture. PLoS One 2016:11(8):e0158243. https://doi.org/10.1371/journal.pone.0158243
  5. Durre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998:49:639–648. https://doi.org/10.1007/s002530051226
  6. Qureshi N., Lin X., Liu S., Saha B. C., Mariano A. P., Polaina J., Ezeji T. C., Friedl A., Maddox I. S., Klasson K. T., Dien B. S., Singh V. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation 2020:6(2). https://doi.org/10.3390/FERMENTATION6020058
  7. German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-14923
  8. Carrié M., Velly H., Ben-Chaabane F., Gabelle J. C. Modeling fixed bed bioreactors for isopropanol and butanol production using Clostridium beijerinckii DSM 6423 immobilized on polyurethane foams. Biochem Eng J 2022:180:108355. https://doi.org/10.1016/J.BEJ.2022.108355
  9. Survase S. A., Jurgens G., Van Heiningen A., Granström T. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 2011:91:1305–1313. https://doi.org/10.1007/s00253-011-3322-3
  10. Cebreiros F., Ferrari M. D., Lareo C. Cellulose hydrolysis and IBE fermentation of eucalyptus sawdust for enhanced biobutanol production by Clostridium beijerinckii DSM 6423. Ind Crops Prod 2019:134:50–61. https://doi.org/10.1016/j.indcrop.2019.03.059
  11. German Collection of Microorganisms and Cell Cultures GmbH: Details n.d. [Online]. [Accessed: 10.07.2023]. Available: https://www.dsmz.de/collection/catalogue/details/culture/DSM-6423
  12. Clostridium acetobutylicum 2291, W | Type strain | DSM 792, ATCC 824, VKM B-1787, CCUG 42182 C, LMG 5710, CECT 508, IFO 13948, JCM 1419, BCRC 10639, CCUG 42182, IAM 19013, KCTC 1790, NBRC 13948, NCIMB 8052, NRRL B-527 | BacDiveID:2529 n.d. [Online]. [Accessed: 10.07.2023]. Available: https://bacdive.dsmz.de/strain/2529
  13. Zetty-Arenas A. M., Alves R. F., Portela C. A. F., Mariano A. P., Basso T. O., Tovar L. P., Filho R. M., Freitas S. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 2019:126:190–198. https://doi.org/10.1016/j.biombioe.2019.05.011
  14. Lütke-Eversloh T., Bahl H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Curr Opin Biotechnol 2011:22(5):634–647. https://doi.org/10.1016/j.copbio.2011.01.011
  15. Vees C. A., Neuendorf C. S., Pflügl S. Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol 2020:47(9-10):753–787. https://doi.org/10.1007/s10295-020-02296-2
  16. Jiang M., Chen J. N., He A. Y., Wu H., Kong X. P., Liu J. L., Lin C.-y., Chen Wu-F., Chen P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry 2014:49(8):1238–1244. https://doi.org/10.1016/j.procbio.2014.04.017
  17. Alam S., Stevens D., Bajpai R. Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. Journal of Industrial Microbiology 1988:2:359–364.
  18. Drahokoupil M., Patáková P. Production of butyric acid at constant pH by a solventogenic strain of Clostridium beijerinckii. Czech Journal of Food Sciences 2020:38(3):185–191. https://doi.org/10.17221/95/2020-CJFS
  19. Al-Shorgani N. K. N., Shukor H., Abdeshahian P., Mohd Nazir M. Y., Kalil M. S., Hamid A. A., Yusoff W. M. W. Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation. Biocatal Agric Biotechnol 2015:4(2):244–249. https://doi.org/10.1016/j.bcab.2015.02.004
  20. Singh V., Singh H., Das D. Optimization of the medium composition for the improvement of hydrogen and butanol production using Clostridium saccharoperbutylacetonicum DSM 14923. Int J Hydrogen Energy 2019:44(49):26905–19. https://doi.org/10.1016/j.ijhydene.2019.08.125
  21. Ennis B. M., Maddox S. The Effect of pH and Lactose Concentration on Solvent Production from Whey Permeate Using Clostridium acetobutylicum. Biotechnol Bioeng 1987:29(3)329–334. https://doi.org/10.1002/bit.260290306
  22. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W., Hamid A. A. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 2018:25(2):339–348. https://doi.org/10.1016/j.sjbs.2017.03.020
  23. Iyyappan J., Bharathiraja B., Varjani S., PraveenKumar R., Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. Bioresour Technol 2022:346:126405. https://doi.org/10.1016/J.BIORTECH.2021.126405
  24. Shaterzadeh M. J., Ataei S. A. The effects of temperature, initial pH, and glucose concentration on biohydrogen production from Clostridium acetobutylicum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 2017:39(11):1118–1123. https://doi.org/10.1080/15567036.2017.1297875
  25. Wang Y., Blaschek H. P. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 2011:102(21):9985–9990. https://doi.org/10.1016/j.biortech.2011.08.038
  26. Qureshi N., Singh V., Liu S., Ezeji T. C., Saha B. C., Cotta M. A. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): Production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 2014:154:222–228. https://doi.org/10.1016/j.biortech.2013.11.080
  27. Al-Shorgani N. K. N., Kalil M. S., Yusoff W. M. W. Fermentation of sago starch to biobutanol in a batch culture using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Ann Microbiol 2012:62:1059–1070. https://doi.org/10.1007/s13213-011-0347-x
  28. Wang P., Chen Y. M., Wang Y., Lee Y. Y., Zong W., Taylor S., McDonald T., Wang Y. Towards comprehensive lignocellulosic biomass utilization for bioenergy production: Efficient biobutanol production from acetic acid pretreated switchgrass with Clostridium saccharoperbutylacetonicum N1-4. Applied Energy 2019:236:551–559. https://doi.org/10.1016/j.apenergy.2018.12.011
  29. Wang P., Zhang J., Feng J., Wang S., Guo L., Wang Y., Lee Y. Y., Taylor S., McDonald T., Wang Y. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology 2019:281:217–225. https://doi.org/10.1016/j.biortech.2019.02.096
  30. Yao D, Dong S, Wang P, Chen T, Wang J, Yue Z-B, et al. Robustness of Clostridium saccharoperbutylacetonicum for Acetone-Butanol-Ethanol production: effects of lignocellulosic sugars and inhibitors Running title: Effects of sugars and inhibitors on ABE fermentation. Fuel 2017:208:549–557. https://doi.org/10.1016/j.fuel.2017.07.004
  31. Welsh F. W., Veliky I. A. The metabolism of lactose by Clostridium acetobutylicum. Biotechnology Letters1986:8:43–46. https://doi.org/10.1007/BF01044400
  32. Yerushalmi L., Volesky B. Importance of Agitation in Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615
  33. Ranjan A., Mayank R., Moholkar V. S. Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Convers Biorefin 2013:3:143–55. https://doi.org/10.1007/s13399-012-0062-2
  34. Doremus M. G., Linden J. C., Moreiras A. R. Agitation and Pressure Effects on Acetone-Butanol Fermentation. Biotechnol Bioeng 1985:27(6):852–860. https://doi.org/10.1002/bit.260270615
  35. Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. Agronomy Research 2021:19(S1):877–895. https://doi.org/10.15159/AR.21.084
DOI: https://doi.org/10.2478/rtuect-2024-0007 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 71 - 83
Submitted on: Jul 16, 2023
Accepted on: Nov 6, 2023
Published on: Feb 19, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Linda Feldmane, Svetlana Raita, Indra Berzina, Zane Geiba, Taras Mika, Iveta Kuzmika, Kriss Spalvins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.