Have a personal or library account? Click to login

Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales

Open Access
|Sep 2023

References

  1. Dutta A., Jinsart W. Gaseous and Particulate Matter Emissions from Road Transport: The Case of Kolkata, India. Environmental and Climate Technologies 2021:25(1):717–735. https://doi.org/10.2478/rtuect-2021-0054
  2. Rogulski M., Badyda A., Firląg S. The Share of Pollution from Land Sources in PM Levels in the Region of Danish Straits, North and Baltic Seas. Environmental and Climate Technologies 2021:25(1):764–773. https://doi.org/10.2478/rtuect-2021-0057
  3. Bozhko L., Starodubets N., Turgel I., Naizabekov A. GHG Emissions Assessment as Part of MSW Green Cluster Design: Case of Large Cities in Russia and Kazakhstan. Environmental and Climate Technologies 2021:25(1):1165–1178. https://doi.org/10.2478/rtuect-2021-0088
  4. Serikbayeva A., Boranbayeva A., Abdibattayeva M., Nurbayeva F., Cherkeshova S., Myrzabekova A. Minimization of the Negative Environmental Impact of Oil Sludge by Using it in the Production of Bitumen. Environmental and Climate Technologies 2022:26(1):1337–1349. https://doi.org/10.2478/rtuect-2022-0101
  5. Dolge K., Blumberga D. What are the Linkages between Climate and Economy? Bibliometric Analysis. Environmental and Climate Technologies 2022:26(1):616–629. https://doi.org/10.2478/rtuect-2022-0047
  6. Sprudza K. L., Klavina A., Berzina B., Kauce R., Martinsone Z. Indoor Air Quality Guidelines Connection to IAQ Certification and Labelling Process. Environmental and Climate Technologies 2023:27(1):28–39. https://doi.org/10.2478/rtuect-2023-0003
  7. Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093
  8. Jankevičienė J., Kanapickas A. Impact of Climate Change on Wind Potential in Lithuania Territory. Environmental and Climate Technologies 2022:26(1):1–11. https://doi.org/10.2478/rtuect-2022-0001
  9. Livzeniece L., Pubule J., Blumberga D. Sustainability Assessment of Wind Energy in Latvia: Sustainability SWOT and Multi-Criteria Analysis. Environmental and Climate Technologies 2021:25(1):1253–1269. https://doi.org/10.2478/rtuect-2021-0095
  10. Puttock G. S., Colenbrander G. W., Blackmore D. R. Maplin Sands experiments 1980: Dispersion results from continuous releases of refrigerated liquid propane. S. Hartwig (ed), Heavy Gas and Risk Assessment 1980:11:147–161. https://doi.org/10.1007/978-94-009-7151-6_9
  11. McQuaid J. Trials on dispersion of heavy gas clouds. Plant/Operations Progress 1985:4(1):58–61. https://doi.org/10.1002/prsb.720040112
  12. Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019
  13. Colenbrander G. W., Puttock J. S. Maplin Sands Experiments 1980: Interpretation and Modelling of Liquefied Gas Spills onto the Sea. Atmospheric Dispersion of Heavy Gases and Small Particles 1984:277–295. https://doi.org/10.1007/978-3-642-82289-6_22
  14. Gotaas Y. Heavy gas dispersion and environmental conditions as revealed by the Thorney Island experiments Journal of Hazardous Materials 1985:11:399–408. https://doi.org/10.1016/0304-3894(85)85050-0
  15. Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-y
  16. Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.043
  17. Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. https://doi.org/10.1016/j.egypro.2018.07.036
  18. Puttock J. S., McFarlane K., Prothero A., Rees F. J., Blewitt D. N. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. https://doi.org/10.1016/0950-4230(91)80003-D
  19. Folch A., Costa A., Hankin R. K. S. twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. https://doi.org/10.1016/j.cageo.2007.12.017
  20. Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. https://doi.org/10.1016/j.atmosenv.2018.09.035
  21. Burns D. S., Rottmann S. D., Plitz A. B. L., Wiseman F. L, Chynwat V. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. https://doi.org/10.1016/j.atmosenv.2012.03.067
  22. Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. https://doi.org/10.2478/ijame-2019-0006
  23. Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. https://doi.org/10.1016/j.ijheatfluidflow.2018.08.005
  24. Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.043
  25. Galeev A. D., Starovoitova, E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. https://doi.org/10.1007/s10891-013-0823-1
  26. Snegirev A.Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. https://doi.org/10.1134/S0018151X11040201
  27. Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand. Environmental and Climate Technologies 2018:22(1):107–117. https://doi.org/10.2478/rtuect-2018-0007
  28. Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009
  29. RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances). Moscow, STC ‘Industrial safety’, 2008:27(6):122. (In Ukrainian).
  30. Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23:1–14. https://doi.org/10.2478/rtuect-2019-0075
  31. Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067
  32. Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117
  33. Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430
  34. Skob Y. A., Ugryumov M. L. Kompʺyuterna interaktyvna systema inzhenernoho analizu ta prohnozu ‘Toxic Spill Safety’ dlya otsinky bezpeky pid chas avariynoho prolyttya toksychnoho zridzhenoho hazu. (Computer Interactive System ‘Toxic Spill Safety’ of Engineering Analysis and Forecast for Safety Assessment of Accidental Spillage of Toxic Liquefied Gas). Official Bulletin of Copyrights 2017:45:212.
  35. Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792
  36. Matsak V. G., Khotsianov L. K. Gigienicheskoe znachenie skorosti ispareniia i davleniia para toksicheskikh veshchestv primeniaemykh v proizvodstve [Hygienic value of evaporation rate and vapor pressure of toxic substances used in production]. Moscow: Medgiz, 1959. (in Russian)
  37. Knott G. D. Interpolating Cubic Splines. Boston: Birkhäuser Publ., 2000. https://doi.org/10.1007/978-1-4612-1320-8
  38. Stepanenko S. N., Voloshin V. G., Kuryshina V. Yu. Raschet skorosti vetra v nizhnem 300-kh metrovom sloye atmosfery po dannym meteorologicheskikh nablyudeniy s uchetom temperaturnoy stratifikatsii i sherokhovatosti poverkhnosti. (Calculation of Wind Speed in the 300-Meter Lower Layer of the Atmosphere Based on the Meteorological Observations Taking Account of Temperature Stratification and Surface Roughness). Ukrainian Hydrometeorological Journal 2016:17:23–30. https://doi.org/10.31481/uhmj.17.2016.03 (In Ukrainian).
  39. Salamonowicz Z., Krauze A., Majder-Lopatka M., Dmochowska A., Piechota-Polanczyk A., Polanczyk A. Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes. Processes 2021:9(2):307. https://doi.org/10.3390/pr9020307
DOI: https://doi.org/10.2478/rtuect-2023-0033 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 450 - 463
Submitted on: Mar 27, 2023
Accepted on: Jul 13, 2023
Published on: Sep 21, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Yurii Skob, Sergiy Yakovlev, Oksana Pichugina, Mykola Kalinichenko, Kyryl Korobchynskyi, Andrii Hulianytskyi, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.