Have a personal or library account? Click to login
The Share of Pollution from Land Sources in PM Levels in the Region of Danish Straits, North and Baltic Seas Cover

The Share of Pollution from Land Sources in PM Levels in the Region of Danish Straits, North and Baltic Seas

Open Access
|Oct 2021

References

  1. [1] Pope C. A., Bates D. V., Raizenne M. E. Health effects of particulate air pollution: Time for reassessment? Environmental Health Perspectives 1995:103:472–480. https://doi.org/10.1289/ehp.9510347210.1289/ehp.9510347215232697656877
  2. [2] Czechowski P. O., et al. Preliminary Attempt at the Identification and Financial Estimation of the Negative Health Effects of Urban and Industrial Air Pollution Based on the Agglomeration of Gdańsk. Sustainability 2020:12:42. https://doi.org/10.3390/su1201004210.3390/su12010042
  3. [3] Priedniece V., et al. Treatment of Particulate Matter Pollution: People’s Attitude and Readiness to Act. Environmental and Climate Technologies 2020:24(2):231–246. https://doi.org/10.2478/rtuect-2020-006910.2478/rtuect-2020-0069
  4. [4] Bajcinovci B. Environmental and Climate Dilemma: Coal for Heating or Clean Air for Breathing: A Case of Prishtina Environmental and Climate Technologies 2019:23(1):41–51. https://doi.org/10.2478/rtuect-2019-000310.2478/rtuect-2019-0003
  5. [5] Yang X. L., et al. Associations of long-term exposure to ambient PM2.5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environment International 2020:138:105589. https://doi.org/10.1016/j.envint.2020.10558910.1016/j.envint.2020.105589816421132146266
  6. [6] Tellez-Rojo M. M., et al. Children’s acute respiratory symptoms associated with PM2.5 estimates in two sequential representative surveys from the Mexico City Metropolitan Area. Environmental Research 2020:180:108868. https://doi.org/10.1016/j.envres.2019.10886810.1016/j.envres.2019.10886831711659
  7. [7] Deniz C., Kilic A., Cıvkaroglu G. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental monitoring and assessment 2010:171:219–228. https://doi.org/10.1007/s10661-009-1273-210.1007/s10661-009-1273-220058072
  8. [8] Bove M. C., et al. PM10 source apportionment applying PMF and chemical tracer analysis to shipborne measurements in the western Mediterranean. Atmospheric Environment 2016:125:140–151. https://doi.org/10.1016/j.atmosenv.2015.11.00910.1016/j.atmosenv.2015.11.009
  9. [9] Schembari C., et al. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship. Atmospheric Environment 2014:98:510–518. https://doi.org/10.1016/j.atmosenv.2014.09.01510.1016/j.atmosenv.2014.09.015
  10. [10] Yau P. S., et al. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 2012:431:299–306. https://doi.org/10.1016/j.scitotenv.2012.03.09210.1016/j.scitotenv.2012.03.09222698572
  11. [11] Chen D., et al. High-spatiotemporal-resolution ship emission inventory of China based on AIS data in 2014. Science of The Total Environment 2017:609:776–787. https://doi.org/10.1016/j.scitotenv.2017.07.05110.1016/j.scitotenv.2017.07.05128763674
  12. [12] Romagnoli P., et al. Particulate PAHs and n-alkanes in the air over Southern and Eastern Mediterranean Sea. Chemosphere 2016:159:516–525. https://doi.org/10.1016/j.chemosphere.2016.06.02410.1016/j.chemosphere.2016.06.02427341155
  13. [13] Zhu L., et al. Transport pathways and potential sources of PM10 in Beijing. Atmospheric Environment 2011:45(3):594–604. https://doi.org/10.1016/j.atmosenv.2010.10.04010.1016/j.atmosenv.2010.10.040
  14. [14] Lee S., et al. Impacts of atmospheric vertical structures on transboundary aerosol transport from China to South Korea. Scientific Reports 2019:9:13040. https://doi.org/10.1038/s41598-019-49691-z10.1038/s41598-019-49691-z673696131506534
  15. [15] Oh H.-R., et al. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM10 episodes during cold season in Seoul, Korea. Atmospheric Environment 2015:109:23–30. https://doi.org/10.1016/j.atmosenv.2015.03.00510.1016/j.atmosenv.2015.03.005
  16. [16] Gupta M., Mohan M. Assessment of contribution to PM10 concentrations from long range transport of pollutants using WRF/Chem over a subtropical urban airshed. Atmospheric Pollution Research 2013:4(4):405–410. https://doi.org/10.5094/APR.2013.04610.5094/APR.2013.046
  17. [17] Salvador P., et al. Composition and origin of PM10 in Cape Verde: Characterization of long-range transport episodes. Atmospheric Environment 2016:127:326–339. https://doi.org/10.1016/j.atmosenv.2015.12.05710.1016/j.atmosenv.2015.12.057
  18. [18] Viana M., et al. Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 2014:90:96–105. https://doi.org/10.1016/j.atmosenv.2014.03.04610.1016/j.atmosenv.2014.03.046
  19. [19] Rogulski M., Badyda A. Investigation of Low-Cost and Optical Particulate Matter Sensors for Ambient Monitoring. Atmosphere 2020:11(10):1040. https://doi.org/10.3390/atmos1110104010.3390/atmos11101040
  20. [20] Owczarek T., Rogulski M., Czechowski O. Verification of equivalence with reference method for measurements of PM10 concentrations using low-cost devices. Scientific Journals of The Maritime University of Szczecin 2019:60(132):84–89. https://doi.org/10.17402/375
  21. [21] Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.04310.1016/j.egypro.2018.07.043
  22. [22] Owczarek T., Rogulski M., Badyda A. Preliminary comparative assessment and elements of equivalence of air pollution measurement results of portable monitoring stations with using stochastic models. E3S Web of Conferences 2018:28:01028. https://doi.org/10.1051/e3sconf/2018280102810.1051/e3sconf/20182801028
  23. [23] Czechowski O., et al. Preliminary comparative assessment of PM10 hourly measurement results from new monitoring stations type using stochastic and exploratory methodology and models. E3S Web of Conferences 2018:28:01010. https://doi.org/10.1051/e3sconf/2018280101010.1051/e3sconf/20182801010
  24. [24] Firląg Sz., Rogulski M., Badyda A. The Influence of Marine Traffic on Particulate Matter (PM) Levels in the Region of Danish Straits, North and Baltic Seas. Sustainability 2018:10(11):4231. https://doi.org/10.3390/su1011423110.3390/su10114231
  25. [25] GPS Visualizer [Online]. [Accessed 15.01.2021]. Available: https://www.gpsvisualizer.com/
  26. [26] HYSPLIT Trajectory Model [Online]. [Accessed 15.01.2021]. Available: https://www.ready.noaa.gov/index.php
DOI: https://doi.org/10.2478/rtuect-2021-0057 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 764 - 773
Published on: Oct 26, 2021
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Mariusz Rogulski, Artur Badyda, Szymon Firląg, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.