Have a personal or library account? Click to login
Alternative “Green” Antimicrobial Agents Obtained by Selective Sorption from Lactobacillus plantarum Culture Cover

Alternative “Green” Antimicrobial Agents Obtained by Selective Sorption from Lactobacillus plantarum Culture

Open Access
|Dec 2020

References

  1. [1] The 71st session of the United Nations General Assembly. WHO Director-General addresses UN General Assembly on antimicrobial resistance. New York, USA, 2016.
  2. [2] Ermolenko E. I. Quantitative characterization of antagonistic activity of lactobacilli. Zhurnal Mikrobiologii, Epidemiologii, iImmunobiologii 2004:5:94–98.
  3. [3] Parada J. L. Bacteriocins from Lactic Acid Bacteria: Purification, Properties and use as Biopreservatives Brazilian archives of biology and technology 2007:50(3):521–542. https://doi.org/10.1590/S1516-8913200700030001810.1590/S1516-89132007000300018
  4. [4] Pisarev O. A., Ezhova N. M. Modern approaches on construction of polymeric sorbents structure for preparative chromatography (review). Sorption and Chromatography Processes 2008:8(4):535–552. (in Russian)
  5. [5] Pisarev O. A. Regulation of sorption selectivity in preparative chromatography of biologically active substances on polymeric sorbents. Trends in chromatography 2013:1:2–45.
  6. [6] OFS.1.7.1.0008.15 Probiotics. General Pharmacopoeia article. (in Russian)
  7. [7] OFS.1.7.1.0006.15 Lactic acid bacteria containing probiotics. General Pharmacopeia article. (in Russian)
  8. [8] Vakhitov T.Y., et al. The action of the growth autostimulation drug of Escherichia coli M-17 (Actoflor) on the growth of pure and mixed cultures of bacteria. Journal of Microbiology 2000:3:20–24. (in Russian)
  9. [9] Gratia A., Fredericq P. Diversité des souches antibio-tiques de E. coli et étendue variable de leur champs d’action. (Diversity of antibiotic strains of E. coli and varying extent of their field of action) C. R. Soc. Biol. 1946:140:1032–1033. (In French)
  10. [10] Jacob F., Lwaff A., Siminonvich A., Wallman E. Definition de qualques terms relatifs à la lysogenie. (Definition of qualques terms relating to lysogeny). Annales de Institut Pasteur 1953:84:222–224. (In French).
  11. [11] Sorokina Y. V. razrabotka tehnologii I standartizacija lekarstvennih form preparata na osnove metabolitov laktobakterij. (Technology development and standartisation of pharmaceutical forms of the preparation on the base of lactobacilli metabolites.) Perm: KGMU, 2009. (in Russian)
  12. [12] Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Official Journal of the European Union 2008:L 312/3.
  13. [13] De Man J. C., Rogosa M., Sharpe M. E. A Medium for the Cultivation of Lactobacilli. Journal of Applied Bacteriology 1960:131:82–91. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x10.1111/j.1365-2672.1960.tb00188.x
  14. [14] GOST 52249-2004: Pravila proizvodstva I kontrolja kachestva lekarstvennih sredstv. (Good Manufacturing Practice for Medicinal Products). (in Russian)
  15. [15] Yelinov N. P. Basis of biotechnology. SPb.: Nauka, 1995. (in Russian)
  16. [16] Polikarpova I., et al. Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-008210.2478/rtuect-2019-0082
  17. [17] Kubule A., et al. Towards Efficient Waste Management in Latvia: An Empirical Assessment of Waste Composition. Environmental and Climate Technologies 2019: 23(2):114–130. https://doi.org/10.2478/rtuect-2019-005910.2478/rtuect-2019-0059
  18. [18] Ozola Z. U., et al. Paper Waste Recycling. Circular Economy Aspects. Environmental and Climate Technologies 2019: 23(3):260–273. https://doi.org/10.2478/rtuect-2019-009410.2478/rtuect-2019-0094
  19. [19] Schved F., et al. Interaction of the bacteriocin pediocin SJ-1 with the cytoplasmic membrane of sensitive bacterial cells as detected by ANS fluorescence. Journal of Applied Bacteriology 2008:76:30–35. https://doi.org/10.1111/j.1365-2672.1994.tb04411.x10.1111/j.1365-2672.1994.tb04411.x
  20. [20] Shenderov B. A. Medical and microbial ecology and functional nutrition. Vol. III: Probiotics and functional nutrition. Moscow: GRANT, 2001.
  21. [21] Yegorov N. S., et al. Bacteriocins. Formation. Features. Application. Antibiotics and chemotherapy 1999:44(6):33–41.
  22. [22] Beloborodova N. V. Anaerobic bacteria metabolites (volatile fatty acids) and macroorganism reactivity. Antibiotics and chemotherapy 2000:2:28–36.
  23. [23] Alvarez-Sieiro P., et al. Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology 2016:100(7):2939–2951. https://doi.org/10.1007/s00253-016-7343-910.1007/s00253-016-7343-9
  24. [24] Blinkova L. P. Bacteriocins: criteria, classification, properties, detection methods. Journal of Micribiology 2003:3:109–113. (in Russian)
  25. [25] Tsapieva A., et al. Structure of plantaricin locus of Lactobacillus plantarum 8P-A3. Beneficial Microbes 2011:2(4):255–261. https://doi.org/10.3920/BM2011.003010.3920/BM2011.0030
  26. [26] Todorov S. D., et al. Comparison of two methods for purification of plantaricin ST31, a bacteriocin produced by Lactobacillus plantarum ST31. Brazilian Journal of Microbiology 2004:35(1-2). https://doi.org/10.1590/S1517-8382200400010002610.1590/S1517-83822004000100026
  27. [27] Daeschel M. A., et al. Bacteriocidal activity of Lactobacillus plantarum C11. Food Microbiology 1990:7(2):91–98. https://doi.org/10.1016/0740-0020(90)90014-910.1016/0740-0020(90)90014-9
  28. [28] Nissen-Meyer J., et al. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. Microbiology 1993:139(9):1973–1978. https://doi.org/10.1099/00221287-139-9-197310.1099/00221287-139-9-1973
  29. [29] Todorov S., et al. Detection and characterization of a novel antibacterial substance produced by Lactobacillus plantarum ST31 isolated from sourdough. International Journal of Food Microbiology 1999:48(3):167–177. https://doi.org/10.1016/S0168-1605(99)00048-310.1016/S0168-1605(99)00048-3
  30. [30] Van Reenen C. A., et al. Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. Journal of Applied Microbiology 1998:84(6):1131–1137. https://doi.org/10.1046/j.1365-2672.1998.00451.x10.1046/j.1365-2672.1998.00451.x
  31. [31] Kato T., et al. Plantaricin 149, a bacteriocin produced by Lactobacillus plantarum NRIC 149. Journal of Fermentation and Bioengineering 1994:77(3):277–282. https://doi.org/10.1016/0922-338X(94)90234-810.1016/0922-338X(94)90234-8
  32. [32] Jimenez-Diaz R., et al. Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Applied Environmental Microbiology 1995:59(5):1416–1424. https://doi.org/10.1128/AEM.59.5.1416-1424.199310.1128/aem.59.5.1416-1424.1993
  33. [33] Gonzalez B., et al. Detection, purification and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Applied Environmental Microbiology 1994:60(6):2158–2163. https://doi.org/10.1128/AEM.60.6.2158-2163.199410.1128/aem.60.6.2158-2163.1994
  34. [34] Anderssen E. L., et al. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricin EF and JK, and the induction factor plantaricin A. Applied Environmental Microbiology 1998:64(2):2269–2272. https://doi.org/10.1128/AEM.64.6.2269-2272.199810.1128/AEM.64.6.2269-2272.1998
  35. [35] Rekhif N., et al. Activity of plantaricin SA6, a bacteriocin produced by Lactobacillus plantarum SA6 isolated from fermented sausage. Journal of Applied Bacteriology 1995:78(4):349–358. https://doi.org/10.1111/j.1365-2672.1995.tb03417.x10.1111/j.1365-2672.1995.tb03417.x
  36. [36] Ennahar S., et al. Production of plantaricin AcH by Lactobacillus plantarum WHE 92, isolated from cheese. Applied Environmental Microbiology 1996:62:4381–4387.10.1128/aem.62.12.4381-4387.1996
  37. [37] Enan G., et al. Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage: characterization, production and bactericidal activity of plantaricin UG1. International Journal of Food Microbiology 1996:30(3):189–215. https://doi.org/10.1016/0168-1605(96)00947-610.1016/0168-1605(96)00947-6
  38. [38] Uteng M., et al. Rapid two-step procedure for large-scale purification of pediocin-like bacteriocins and other cationic antimicrobial peptides from complex culture medium. Applied Environmental Microbiology 2002:68(2):952–956. https://doi.org/10.1128/aem.68.2.952-956.200210.1128/AEM.68.2.952-956.200212672811823243
  39. [39] Ghrairi T., et al. Detection and characterization of a bacteriocin, putadicin T01, produced by Pseudomonas putida isolated from hot spring water. Acta pathologica et microbiologica Scandinavica 2014:123(3):260–268. https://doi.org/10.1111/apm.1234310.1111/apm.1234325556393
  40. [40] Beaulieu L., et al. An improved and simplified method for the large-scale purification of pediocin PA-1 produced by Pediococcus acidilactici. Biotechnology and Applied Biochemistry 2006:43(2):77–84. https://doi.org/10.1042/BA2005004110.1042/BA2005004116117726
  41. [41] Parada J. L. C., et al. Bacteriocins from Lactic Acid Bacteria: Purification, Properties and use as Biopreservatives. Brazilian Archives of Biology and Technology 2007:50(3):521–542. https://doi.org/http://doi.org/10.1590/S1516-8913200700030001810.1590/S1516-89132007000300018
  42. [42] Schöbitz R., et al. A bacteriocin from Carnobacterium piscicola for the control of Listeria monocytogenes in vacuumpackaged meat. Food Microbiology 1999:16(3):249–255. https://doi.org/10.1006/fmic.1998.024110.1006/fmic.1998.0241
  43. [43] Jack R. W., Tagg J. R., Ray B. Bacteriocins of Gram-positive bacteria. Microbiology Reviews 1995:59(2):171–200. https://doi.org/10.1128/MMBR.59.2.171-200.199510.1128/mr.59.2.171-200.19952393597603408
  44. [44] Guyonnet D., et al. Method for rapid purification of class IIa bacteriocins and comparison of their activities. Applied Environmental Microbiology 2000:66(4):1744–1748. https://doi.org/10.1128/aem.66.4.1744-1748.200010.1128/AEM.66.4.1744-1748.20009205610742275
  45. [45] Kumari Garsa A., et al. Bacteriocin Production and Different Strategies for Their Recovery and Purification. Probioticsand Antimicrobian Proteins 2014:6(1):47–58 https://doi.org/10.1007/s12602-013-9153-z10.1007/s12602-013-9153-z24676767
  46. [46] Barbosa M. S., et al. Franco Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiology 2015:46:254–262. https://doi.org/10.1016/j.fm.2014.08.00410.1016/j.fm.2014.08.00425475294
  47. [47] Ribeiro S. C., et al. Characterization and Application of Antilisterial Enterocins on Model Fresh Cheese. Journal of Food Protection 2017:80(8):1303–1316. https://doi.org/10.4315/0362-028X.JFP-17-03110.4315/0362-028X.JFP-17-03128703625
  48. [48] Snyder A. B., Worobo R. W. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. Journal of the Science of Food and Agriculture 2014:94(1):28–44. https://doi.org/10.1002/jsfa.629310.1002/jsfa.6293
  49. [49] Mackay V. C., et al. Purification of bacteriocins of lactic acid bacteria: problems and pointers. Journal of Food Microbiology 1997:34(1):1–16. https://doi.org/10.1016/S0168-1605(96)01167-110.1016/S0168-1605(96)01167-1
DOI: https://doi.org/10.2478/rtuect-2020-0046 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 740 - 754
Published on: Dec 31, 2020
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2020 Georgii Riabinin, A. M. Abd El-Aty, Dagnija Blumberga, Denis Baranenko, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.