Have a personal or library account? Click to login

References

  1. [1] EN 13501-6:2018. Fire classification of construction products and building elements - Part 6: Classification using data from reaction to fire tests on power, control and communication cables.
  2. [2] EN ISO 1716:2018. Reaction to fire tests for products - Determination of the gross heat of combustion (calorific value).
  3. [3] EN 50399:2011+A1:2016. Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during flame spread test. Test apparatus, procedures, results.
  4. [4] IEC 60332-1-2:2004+AMD1:2015 CSV. Tests on electric and optical fibre cables under fire conditions - Part 1-2: Test for vertical flame propagation for a single insulated wire or cable - Procedure for 1 kW pre-mixed flame.
  5. [5] STN 92 0203:2013/O1:2013. Požiarna bezpečnosť stavieb. Trvalá dodávka elektrickej energie pri požiari (Fire safety of buildings. Permanent electricity supply during fire).
  6. [6] MARTINKA, J., RANTUCH, P., SULOVÁ, J., MARTINKA, F. 2019. Assessing the fire risk of electrical cables using a cone calorimeter. Journal of Thermal Analysis and Calorimetry, 135(6), 3069-3083. ISSN 1388-6150.
  7. [7] ISO 5660-1:2015. Reaction to fire tests. Heat release, smoke production and mass loss rate - Part 1: Heat release rate (cone calorimeter method) and smoke production rate (dynamic measurement).
  8. [8] PARK, J., W., LIM, O., K., YOU, W., J. 2020. Analysis on the Fire Growth Rate Index Considering of Scale Factor, Volume Fraction, and Ignition Heat Source for Polyethylene Foam Pipe Insulation. Energies, 13(14), 1-15, ISSN 1996-107.10.3390/en13143644
  9. [9] WANG, D-Y., LIU, Y., WANG, Y-Z., ARTILES, C., P., HULL, T., R., PRICE, D. 2007. Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polymer Degradation and Stability, 92, 1592-1598, ISSN 0141-3910.
  10. [10] WANG, Y., KANG, W., CHEN, C. et al. 2019. Combustion behaviour and dominant shrinkage mechanism of flexible polyurethane foam in the cone calorimeter test. Journal of Hazardous Materials, 365, 395-404, ISSN 0304-3894.
  11. [11] SVETLÍK, J., VEĽAS, A. 2017. Vehicle fire safety of the static traffic. In Transport Means - Proceedings of the International Conference. The 21st International Scientific Conference Transport Means: Lithuania, Kaunas, pp. 636-639. ISSN 1822-296X.
  12. [12] AN, W., WANG, T., LIANG, K., TANG, Y., WANG, Z. 2020. Effects of interlayer distance and cable spacing on flame characteristics and fire hazard of multilayer cables in utility tunnel. Case Studies in Thermal Engineering, 22, DOI: 10.1016/j.csite.2020.100784, ISSN 2214-157X.10.1016/j.csite.2020.100784
  13. [13] XU, Q., JIN, C., MAJLINGOVA, A., ZACHAR, M., RESTAS, A. 2019. Evaluate the flammability of a PU foam with double-scale analysis. Journal of Thermal Analysis and Calorimetry, 135(6), 3329-3337, ISSN 1388-6150.
  14. [14] LI, J., HE, S., WANG, T., SHEN, Z., CHEN, X., ZHOU, F. 2021. A catalyst powder-based spraying approach for rapid and efficient removal of fire-generated CO: From laboratory to pilot scale. Journal of Hazardous Materials, 415, 1-12, ISSN 0304-3894.
Language: English
Page range: 81 - 90
Submitted on: Apr 20, 2021
Accepted on: May 26, 2021
Published on: Aug 5, 2021
Published by: Slovak University of Technology in Bratislava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2021 Jozef Martinka, Peter Rantuch, Igor Wachter, Tomáš Štefko, Martin Trčka, Martina Hladová, Aleš Nečas, Janka Sulová, published by Slovak University of Technology in Bratislava
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.