Have a personal or library account? Click to login
The importance of arterial stiffness parameters for predicting Syntax Score in acute coronary syndrome Cover

The importance of arterial stiffness parameters for predicting Syntax Score in acute coronary syndrome

Open Access
|Dec 2025

References

  1. SHIBATA T., MOK Y., BALLEW SH., TANAKA H., MATSUSHITA K. Peripheral vs. central arterial stiffness and cardiovascular events in older adults: the Atherosclerosis Risk in Communities study. Eur J Prev Cardiol. 2025;:zwaf545.
  2. THYGESEN K., ALPERT JS., JAFFE AS., CHAITMAN BR., BAX JJ., MORROW DA., et al. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018;138(20):e618–51.
  3. SUMIN AN., SHCHEGLOVA A.V., BARBARASH OL. Dynamics of the State of Arterial Stiffness as a Possible Pathophysiological Factor of Unfavorable Long-Term Prognosis in Patients after Coronary Artery Bypass Grafting. Biomedicines. 2024;12(5):1018.
  4. HAMETNER B., WASSERTHEURER S., MAYER CC., DANNINGER K., BINDER RK., WEBER T. Aortic Pulse Wave Velocity Predicts Cardiovascular Events and Mortality in Patients Undergoing Coronary Angiography. Hypertension. 2021;77(2):571–81.
  5. SARAVANAN CR., CHOWDHURY SR., INBAN P., CHANDRASEKARAN SH., PATTANI HH., SANTOSHI K., et al. Predictive significance of cardio ankle vascular index for the assessment of cardiovascular risk in hypertensive patients: A systematic review. J Clin Hypertens. 2024;26(9):1005–14.
  6. MIYOSHI T., SHIRAI K., HORINAKA S., HIGAKI J., YAMAMURA S., SAIKI A., et al. Association between Cardio-Ankle Vascular Index and Heart Failure Outcomes: Insights from a Prospective Multicenter Cohort. JACC Adv. 2025;:102187.
  7. PAPAIOANNOU TG., ARGYRIS A., PROTOGEROU AD., VRACHATIS D., NASOTHIMIOU EG., SFIKAKIS PP., et al. Non-invasive 24hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: The first feasibility and reproducibility study. Int J Cardiol. 2013;169(1):57–61.
  8. WOLOS K., PSTRAS L., DEBOWSKA M., POLESZCZUK J. Impact of multi-limb oscillometric cuff measurements on hemodynamics: insights from pulse wave propagation modeling. Front Physiol. 2025;16.
  9. ÇELIKBUDAK ORHON C., ADAMOPOULOS D., CROWE LA., ASLANIDOU L., KASSAI M., ASLAM I., et al. Relation of carotid-to-femoral pulse wave velocity to aortic stiffness and total arterial compliance in healthy individuals. J Hypertens. 2025.
  10. SONG Y., XU B., XU R., TUNG R., FRANK E., TROMBLE W., et al. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults. Hypertension. 2016;68(1):46–53.
  11. KRUGER R., HERSANT J., KODITHUWAKKU V., STRAUSS-KRUGER M., SINHA MD., JOHANSSON M., et al. Defining early vascular aging in youth: an expert consensus document from the youth vascular consortium. J Hypertens. 2025.
  12. PAN X., WANG N., HUANG Y. A multicenter study on the diagnostic value of ankle brachial index combined with pulse volume wave parameters for peripheral arterial disease. Front Cardiovasc Med. 2025;12.
  13. PARTALIDOU S., PATOULIAS D., PANTEKIDIS I., KEFAS A., DOUMAS M., GKALIAGKOUSI E., et al. The cross-talk between arterial stiffness and microvascular complications in diabetes mellitus: a systematic review of the literature. J Diabetes Metab Disord. 2025;24(2):144.
  14. PIERCE GL., HARRIS SA., SEALS DR., CASEY DP., BARLOW PB., STAUSS HM. Estimated aortic stiffness is independently associated with cardiac baroreflex sensitivity in humans: role of ageing and habitual endurance exercise. J Hum Hypertens. 2016.
  15. CILSAL E. In newly diagnosed hypertensive children, increased arterial stiffness and reduced heart rate variability were associated with a non-dipping blood pressure pattern. Rev Port Cardiol. 2020;39(6):331–8.
  16. KILIC A., BAYDAR O. The relationship between diurnal blood pressure abnormalities and target organ damage in normotensive subjects. Which is more important? Increased blood pressure levels or circadian blood pressure abnormalities. Clin Exp Hypertens. 2020;42(3):244–9.
  17. BJARNEGÅRD N., LÄNNE T., CINTHIO M., EKSTRAND J., HEDMAN K., NYLANDER E., et al. Vascular characteristics in young women—Effect of extensive endurance training or a sedentary lifestyle. Acta Physiol. 2018;223(2).
  18. TIMMIS A., TOWNSEND N., GALE CP., TORBICA A., LETTINO M., PETERSEN SE., et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur Heart J. 2020;41(1):12–85.
  19. LIAO J, FARMER J. Arterial Stiffness as a Risk Factor for Coronary Artery Disease. Curr Atheroscler Rep. 2014;16(2):387.
  20. KYRIAKOULIS KG., CHATZOPOULOS M., KOMNIANOU A., TERENTES-PRINTZIOS D., DIMITRIADIS K., VLACHOPOULOS C., et al. Brachial-ankle versus carotid-femoral pulse wave velocity: a systematic review and meta-analysis. J Hypertens. 2025.
  21. JUSTIN J., FAYOL A., BRUNO R-M., KHETTAB H., BOUTOUYRIE P. International Guidelines for Hypertension: Resemblance, Divergence and Inconsistencies. J Clin Med. 2022;11(7):1975.
  22. NIWIŃSKA MM., CHLABICZ S. Evaluation of Arterial Stiffness Parameters Measurement With Noninvasive Methods—A Systematic Review. Cardiol Res Pract. 2024;2024(1).
  23. THEODORAKOPOULOU MP., IATRIDI F., STAVROPOULOS K., KARAGIANNIDIS AG., SCHOINA M., MANTI S., et al. Structural and Functional Capillary Integrity, Arterial Stiffness and Central Hemodynamics in CKD Patients With and Without Nocturnal Hypertension. Am J Hypertens. 2025;38(8):580–7.
  24. ALEM MM., ALSHEHRI AM. Inter-relationships between left ventricular mass, geometry and arterial stiffness. J Int Med Res. 2020;48(4).
  25. KYHL K., VON HUTH S., BOJER A., THOMSEN C., ENGSTRØM T., VEJLSTRUP N., et al. Conductance artery stiffness impairs atrio-ventriculo-arterial coupling before manifestation of arterial hypertension or left ventricular hypertrophic remodelling. Sci Rep. 2021;11(1):14467.
  26. NEMES A., PIROS G., DOMSIK P., KALAPOS A., LENGYEL C., OROSZ A., et al. Correlations between three-dimensional speckle-tracking echocardiography-derived left atrial functional parameters and aortic stiffness in healthy subjects - Results from the MAGYAR-Healthy Study. Acta Physiol Hung. 2015;102(2):197–205.
  27. VLACHOPOULOS C., AZNAOURIDIS K., STEFANADIS C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness. A Systematic Review and Meta-Analysis. J Am Coll Cardiol. 2010;55(13):1318–27.
  28. OHKUMA T., NINOMIYA T., TOMIYAMA H., KARIO K., HOSHIDE S., KITA Y., et al. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease. Hypertension. 2017;69(6):1045–52.
  29. WILLUM HANSEN T., STAESSEN JA., TORP-PEDERSEN C., RASMUSSEN S., THIJS L., IBSEN H., et al. Prognostic Value of Aortic Pulse Wave Velocity as Index of Arterial Stiffness in the General Population. Circulation. 2006;113(5):664–70.
  30. COLLET C., SAKAI K., MIZUKAMI T., OHASHI H., BOUISSET F., CAGLIONI S., et al. Vascular Remodeling in Coronary Microvascular Dysfunction. JACC Cardiovasc Imaging. 2024;17(12):1463–76.
  31. PRSKALO Z., BRIZIĆ I., MARKOTA D., MARKOTA I., BOBAN M., TOMIC M., et al. Arterial stiffness in patients with coronary artery disease: relation with in-stent restenosis following percutaneous coronary intervention. BMC Cardiovasc Disord. 2016;16(1):128.
  32. KI Y-J., CHOI D-H., LEE Y-M., LIM L., SONG H., KOH Y-Y. Predictive value of brachial–ankle pulse wave velocity for long-term clinical outcomes after percutaneous coronary intervention in a Korean cohort. Int J Cardiol. 2014;175(3):554–9.
  33. KIM H., LIM W., SEO J., KIM S., ZO Z., KIM M. Prediction of cardiovascular events using brachial‐ankle pulse wave velocity in hypertensive patients. J Clin Hypertens. 2020;22(9):1659–65.
  34. KIM JM., KIM SS., KIM IJ., KIM JH., KIM BH., KIM MK., et al. Arterial stiffness is an independent predictor for risk of mortality in patients with type 2 diabetes mellitus: the REBOUND study. Cardiovasc Diabetol. 2020;19(1):143.
  35. CHEN YH., HUANG SS., LIN SJ. TIMI and GRACE Risk Scores Predict Both Short-Term and Long-Term Outcomes in Chinese Patients with Acute Myocardial Infarction. Acta Cardiol Sin. 2018;34(1):4–12.
  36. GEDIKLI O., GOKHAN A., ADEM U., SABRI D., KORHAN S. Relation of the aortic stiffness with the GRACE risk score in patients with the non ST-segment elevation myocardial infarction. Int J Clin Exp Med. 2014;7(9):3030–6.
  37. KLINGBEIL AU., JOHN S., SCHNEIDER MP., JACOBI J., WEIDINGER G., SCHMIEDER RE. AT1-receptor blockade improves augmentation index. J Hypertens. 2002;20(12):2423–8.
  38. BACCI MR., FONSECA FLA., NOGUEIRA LFF., BRUNIERA FR., FERREIRA FM., DE BARROS DM., et al. Predominance of STEMI and severity of coronary artery disease in a cohort of patients hospitalized with acute coronary syndrome: a report from ABC Medical School. Rev Assoc Med Bras. 2015;61(3):240–3.
  39. POLLACK CVJ., HOLLANDER JE., CHEN AY., PETERSON ED., BANGALORE S., PEACOCK FW., et al. Non-ST-elevation myocardial infarction patients who present during off hours have higher risk profiles and are treated less aggressively, but their outcomes are not worse: a report from Can Rapid Risk Stratification of Unstable Angina Patients Suppress AD. Crit Pathw Cardiol. 2009;8(1):29–33.
  40. MEDVEGY M., SIMONYI G., MEDVEGY N., PECSVARADY Z. Non-ST elevation myocardial infarction: a new pathophysiological concept could solve the contradiction between accepted cause and clinical observations. Acta Physiol Hung. 2011;98(3):252–61.
DOI: https://doi.org/10.2478/rjim-2025-0023 | Journal eISSN: 2501-062X | Journal ISSN: 1220-4749
Language: English
Submitted on: Oct 19, 2025
Published on: Dec 18, 2025
Published by: N.G. Lupu Internal Medicine Foundation
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Semih Gülle, Cenk Ekmekci, Harun Akar, Öner Özdoğan, published by N.G. Lupu Internal Medicine Foundation
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

AHEAD OF PRINT