Voigt J-U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 2015; 28(2):183–93. doi:10.1016/j.echo.2014.11.003.
Voigt JU, Cvijic M. 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC: Cardiovasc Imaging 2019; 12(9):1849–1863. doi: 10.1016/j.jcmg.2019.01.044.
Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, et al. Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imaging 2016; 35:967–977.
Hensel KO, Jenke A, Leischik R. Speckle-tracking and tissue-doppler stress echocardiography in arterial hypertension: a sensitive tool for detection of subclinical LV impairment. Biomed Res Int 2014. doi: 10.1155/2014/472562. Epub 2014 Oct 15.
Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V. Effects of frame rate n three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr 2012; 25:978–985.
Ortega A, Provost J, Tong L, Santos P, Heyde B, Pernot M, D’hooge J. A comparison of the performance of different multiline transmit setups for fast volumetric cardiac ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63:2082–2091.
Santos P, Tong L, Ortega A, Løvstakken L, Samset E, D’hooge J. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: A simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 2015; 62:1320–1330.
Tong L, Ramalli A, Jasaityte R, Tortoli P, D’hooge J. Multi-transmit beam forming for fast cardiac iImaging—experimental validation and in vivo application. IEEE Trans Med Imaging 2014; 33:1205–1219.
Tong L et al. Plane wave imaging for cardiac motion estimation at high temporal resolution: A feasibility study in-vivo. Ultrasonics Symposium (IUS), 2012 IEEE International 2012; 228–231. doi:10.1109/ULTSYM.2012.0057.
Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52.
Tanter M, Bercoff J, Sandrin L, Fink M. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49:1363–74.
Caenen, A. et al. Effect of ultrafast imaging on shear wave visualization and characterization: an experimental and computational study in a pediatric ventricular model 2017Applied Sciences; 7:840.
Papadacci C, Pernot M, Couade M, Fink M, Tanter M. High-contrast ultrafast imaging of the heart. IEEE Trans Ultrason Ferroelectr Freq Control 2014; 61:288–301.
Song S, Huang Z, Nguyen T-M, Wong EY, Arnal B, Donnell M, Wang RK. Shear modulus imaging by direct visualization of propagating shear waves with phase-sensitive optical coherence tomography. J Biomed Optics 2013; 18(12):121509. doi: 10.1117/1.JBO.18.12.121509.
Chang E J-H, Guo Y, Lee W-N. Experimental investigation of shear wave imaging in thin, soft media in various coupling conditions. IEEE International Ultrasonics Symposium (IUS) 1–1 (IEEE, 2017). doi:10.1109/ULTSYM.2017.8092577.
Correia, M. et al. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography. IEEE Trans Ultrason Ferroelectr Freq Control 2016; 63(3):420–31. doi:10.1109/TUFFC.
Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2018; 12(7 Pt 1):1135–1145. doi:10.1016/j.jcmg.2018.02.002.
Santos P, Petrescu A, Pedrosa J, Orlowska M, Komini V, Voigt JU, D’hooge. Natural shear wave imaging in the human heart: normal values, feasibility and reproducibility. 2018; IEEE Trans Ultrason Ferroelectr Freq Control 1–1. doi:10.1109/TUFFC.2018.2881493.
Couade M, et al. In vivo quantitative mapping of myocardial stiffening and transmural anisotropy during the cardiac cycle. IEEE Trans Med Imaging 2011; 30:295–305.
Villemain O, Correia M, Khraiche D, Podetti I, Meot M, Legendre A, et al. Myocardial stiffness assessment using shear wave imaging in pediatric hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 2017; 11(5):779–781. doi:10.1016/j.jcmg.2017.08.018.
Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M. Real-time assessment of myocardial contractility using shear wave imaging 2011; 28;58(1):65–72. doi:10.1016/j.jacc.2011.02.042.
Caenen A, Pernot M, Nightingale KR,, Voigt JU, Vos HJ, Segers P, D’hooge J. Assessing cardiac stiffness using ultrasound shear wave elastography. Phys Med Biol 2022; 67:02TR01.
Kanai H. Propagation of spontaneously actuated pulsive vibration in human heart wall and in vivo viscoelasticity estimation. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52:1931–1942.
Papadacci C, Finel V, Villemain O, Tanter M, Pernot M. 4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart. IEEE Trans Med Imaging 2020; 39:4436–4444.
Salles S, Espeland T, Molares A, Aase SA, Hammer TA, Støylen A, et al. 3D myocardial mechanical wave measurements: toward in vivo 3D myocardial elasticity mapping. JACC Cardiovasc Imaging 2021; 14(8):1495–1505. doi:10.1016/j.jcmg.2020.05.037.
Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M. Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol 2011; 58:65–72.
Vejdani-Jahromi M, Freedman J, Nagle M, Kim Y-J, Trahey GE, Wolf PD. Quantifying myocardial contractility changes using ultrasound-based shear wave elastography. J Am Soc Echocardiogr 2017; 30:90–96.
Pernot M, Couade M, Mateo P, Crozatier B, Fischmeister R, Tanter M.. Real-time assessment of myocardial contractility using shear wave imaging. J Am Coll Cardiol 2011; 58:65–72.
Villemain O, Baranger MS, Friedberg MK, Papadocci C. Dizeux A, Messas E, et al. Ultrafast ultrasound imaging in pediatric and adult cardiology. JACC Cardiovasc Imaging 2019; 13(8):1771–1791. doi:10.1016/j. jcmg.2019.09.019.
Lee SM. Lee JM, Kang HJ, Yang HK, Yoon JH, Chang W, et al. Liver fibrosis staging with a new 2D-shear wave elastography using comb-push technique: Applicability, reproducibility, and diagnostic performance. PLoS One 2017; 1(5): e0177264.
Marais L, Pernot M, Khettab H, Tanter M, Messas E, Zidi M, et al. Arterial stiffness assessment by shear wave elastography and ultrafast pulse wave imaging: comparison with reference techniques in normotensives and hypertensives. Ultrasound Med Biol 2019; 45:758–772.
Urban MW, Pislaru C, Nenadic IZ, Kinnick RR, Greenleaf, JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE Trans Med Imaging 2013; 32(2):247–261. doi:10.1109/TMI.2012.2222656.
Petrescu A, Santos P, Orlowska M, Pedrosa J, Bézy S, Chakraborty B, et al. Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc Imaging 2019; 12(12):2389–2398. doi:10.1016/j.jcmg.2018.11.029.
Petrescu A, Bézy S, Cvijic M, Santos P, Orlowska M, Duchenne J, et al. Shear wave elastography using high-frame-rate imaging in the follow-up of heart transplantation recipients. JACC Cardiovasc Imaging 2020; 13:2304–2313.
Lakatta EG. Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003; 107:346–54.
Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, et al. Myocardial stiffness evaluation using noninvasive shear Wave Imaging in Healthy and Hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2019; 12:1135–1145. doi: 10.1016/j.jcmg.2018.02.002.
Vos HJ, van Dalen BM, Bosch JG, van der Steen AFW, de Jong N. Myocardial passive shear wave detection. in 2015 IEEE International Ultrasonics Symposium (IUS) 1–4 (IEEE, 2015). doi:10.1109/ULTSYM.2015.0152.
Pernot M, Lee W-N, Bel A, Mateo P, Couade M, Tanter M, et al. Shear wave imaging of passive diastolic myocardial stiffness: Stunned versus infarcted myocardium. JACC Cardiovasc Imaging 2016; 9(9):1023–1030.
Pedreira, O, Papadacci C, Augeul L, Loufouat J, Lo-Grasso M, Tanter M, et al. Quantitative stiffness assessment of cardiac grafts using ultrasound in a porcine model: a tissue biomarker for heart transplantation. EBioMedicine 2022; 83:104201. doi:10.1016/j.ebiom.2022.104201.
Bézy S, Duchenne J, Orlowska M, Caenen A, Amoni M, Ingelaere S, et al. Impact of loading and myocardial mechanical properties on natural shear waves: comparison to pressure-volume loops. JACC Cardiovasc Imaging 2022; 15(12):2023–2034. doi: 10.1016/j.jcmg.2022.07.011. Epub 2022 Sep 14.
Bezy S, Cvijic M, Petrescu A, Orlowska M, Santos P, Duchenne J, et al. Shear wave propagation velocity after aortic valve closure could be a novel parameter for myocardial contractility. Eur Heart J - Cardiovasc Imaging 2020; 21(Suppl_1): jez319.034, https://doi.org/10.1093/ehjci/jez319.034
Werner, A. How well does shear wave imaging predict elevated filling pressures? A comparison to the actual guideline algorithm. Eur Heart J -Cardiovasc Imaging 2022; 23(Suppl 1). jeab289.350, https://doi.org/10.1093/ehjci/jeab289.350
Wouters, L. et al. Septal scar detection in patients with left bundle branch block using echocardiographic shear wave elastography. JACC Cardiovasc Imaging 2022; 21;S1936-878X(22)00679-9.doi: 10.1016/j. jcmg.2022.11.008. Online ahead of print.
Villemain, O. et al. Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 2019; 12:1135–1145.
Strachinaru M, Bosch JG, van Gils L, van Dalen BM, Schinkel 3, Antonius F W van der Steen AFL, et al. Naturally occurring shear waves in healthy volunteers and hypertrophic cardiomyopathy patients. Ultrasound Med Biol 2019; 45: 1977–1986.
Strachinaru M, Bosch JG, Schinkel AFL, Michels M, Feyz L, de Jong N, et al. Local myocardial stiffness variations identified by high frame rate shear wave echocardiography. Cardiovasc Ultrasound 2020; 18:40.
Petrescu A, et al. Velocities of Naturally Occurring Myocardial Shear Waves Increase With Age and in Cardiac Amyloidosis. JACC Cardiovasc Imaging 12, 2389–2398.
Cvijic M, Bézy S, Petrescu A, Santos P, Orlowska M, Chakraborty B, et al. Interplay of cardiac remodelling and myocardial stiffness in hypertensive heart disease. Eur Heart J Cardiovasc Imaging 2020; 21(6):664–672. doi: 10.1093/ehjci/jez205.PMID: 31377789
Rowan RA, Billingham ME. Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis. Hum Pathol 1990; 21:767–772.
Petrescu, A. et al. Shear Wave Elastography Using High-Frame-Rate Imaging in the Follow-Up of Heart Transplantation Recipients. JACC Cardiovasc Imaging 13, 2304–2313 (2020).
Voigt, J. U. & Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC: Cardiovascular Imaging vol. 12 1849–1863 Preprint at https://doi.org/10.1016/j.jcmg.2019.01.044 (2019).
Fujikura K, Makkiya M, Farooq M, Mohammed Makkiya1, Muhammad Farooq1, Yun Xing1, Wayne Humphrey1, Mohammad Hashim Mustehsan Xing Y, Humphrey W, Mustehsan MH, et al. Speckle-tracking echocardiography with novel imaging technique of Hhigher frame rate. J Clin Med 2021; 10(10:2095.
Andersen MV, Moore C, Arges K, Søgaard P, Østergaard LR, Schmidt SE, et al. High-frame-rate deformation imaging in two dimensions using continuous speckle-feature tracking. Ultrasound Med Biol 2016; 42:2606–2615.
Orlowska, M. et al. In-vivo comparison of multiline transmission and diverging wave imaging for high frame rate speckle tracking echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 68(5):1511–1520.
Orlowska, M. et al. A novel 2-D speckle tracking method for high-frame-rate echocardiography. IEEE Trans Ultrason Ferroelectr Freq Control 2020; 67:1764–1775.
Maresca D, Villemain O, Bizé A, Sambin L, Tanter M, et al. Noninvasive imaging of the coronary vasculature using ultrafast ultrasound. JACC Cardiovasc Imaging 2018; 11(6):798–808. doi:10.1016/j.jcmg.2017.05.021.
Demene, C. et al. Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases Doppler and ultrasound sensitivity. IEEE Trans Med Imaging 2015; 34:2271–2285.
Correia M, Maresca D, Goudot G, Villemain O, Bizé A, Sambin L, Tanter T, et al. Quantitative imaging of coronary flows using 3D ultrafast Doppler coronary angiography. Phys Med Biol 2020; 65, (2020).
Chapman JV. The technical aspects of Doppler ultrasound. In The noninvasive evaluation of Hhemodynamics in congenital heart disease, J. V. Chapman and G. R. Sutherland (eds.). Springer, Dordrecht, The Netherlands, 1990, pp. 1–34. doi:10.1007/978-94-009-0647-1_1.
Prinz C, Faludi R, Walker A, Amzulescu M, Gao H, Uejima T, et al. Can echocardiographic particle image velocimetry correctly detect motion patterns as they occur in blood inside heart chambers? A validation study using moving phantoms. Cardiovasc Ultrasound 2012; 10:24.
Fadnes S, Wigen MS, Nyrnes SA, Lovstakken L. In vivo intracardiac vector flow imaging using phased array transducers for pediatric cardiology. IEEE Trans Ultrason Ferroelectr Freq Control 2017; 64:1318–1326.
Fadnes S, Nyrnes SA, Torp H, Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound Med Biol 2014; 40:2379–2391.
Ramalli A, Bezy S, Orlowska M, Boni E, Voigt J-U, D’hooge J. High frame rate color Doppler to measure intra-ventricular pressure gradients. Proceedings IEEE Ultrasonics 2020 (In press).
Wigen M, Lovstakken L. In vivo three-dimensional intra-cardiac vector flow imaging using a 2D matrix array transducer. In 2016 IEEE International Ultrasonics Symposium (IUS). doi:10.1109/ULTSYM.2016.7728690.
Nyrnes SA, Fadnes S, Wigen MS, Mertens L, Lovstakken L. . Blood speckle-tracking based on high-frame rate ultrasound Iimaging in pediatric cardiology. J Am Soc Echocardiogr 2020; 33:493–503.e5.
Wigen, MS, Fadnes S, Rodriguez-Molares A, Bjastad T, Eriksen M, Stensath KH, et al. 4-D intracardiac ultrasound vector flow imaging–feasibility and comparison to Pphase-contrast MRI. IEEE Trans Med Imaging 2018; 37:2619–2629.
Lee WN, Pernot M, Couade M, Messas E, Bruneval P, Bel A, et al. Mapping myocardial fiber orientation using echocardiography-based shear wave imaging. IEEE Trans Med Imaging 2012; 31:554–562.
Gennisson JL, Deffieux T, Macé E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36(5):789–801.
Lee WN, Larrat B, Pernot M, Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 2012; 57(16):5075–5095.
Lee W-N, et al. Noninvasive assessment of myocardial anisotropy in vitro and in vivo using supersonic shear wave imaging. In 2010 IEEE International Ultrasonics Symposium (IEEE, 2010). doi:10.1109/ULTSYM.2010.5935898.
Lee WN, Larrat B, Pernot M, Tanter M. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium. Phys Med Biol 2012; 57(16):5075–5095.