References
- Abdelfatah, M. A., Elhaty, N. M., Mousa, A. E., and El-Fiky, G. S. (2022). Derived precipitable water vapour from GNSS and radiosonde data using time series and spatial least-square. NRIAG Journal of Astronomy and Geophysics, 11(1):113–119, doi:10.1080/20909977.2021.2000267.
- Abdellaoui, H., Zaourar, N., and Kahlouche, S. (2019). Contribution of permanent stations GPS data to estimate the water vapor content over Algeria. Arabian Journal of Geosciences, 12(3), doi:10.1007/s12517-019-4226-2.
- Abraha, K. E., Lewi, E., Masson, F., Boy, J.-P., and Doubre, C. (2015). Spatial–temporal variations of water vapor content over Ethiopia: A study using GPS observations and the ECMWF model. GPS Solutions, 21(1):89–99, doi:10.1007/s10291-015-0508-7.
- Acheampong, A., Fosu, C., Amekudzi, L., and Kaas, E. (2017). Precipitable water comparisons over Ghana using PPP techniques and reanalysis data. South African Journal of Geomatics, 6(3):449, doi:10.4314/sajg.v6i3.13.
- Acheampong, A. and Obeng, K. (2019). Application of GNSS derived precipitable water vapour prediction in west africa. Journal of Geodetic Science, 9(1):41–47, doi:10.1515/jogs-2019-0005.
- Acheampong, A. A., Fosu, C., Amekudzi, L. K., and Kaas, E. (2015). Comparison of precipitable water over ghana using GPS signals and reanalysis products. Journal of Geodetic Science, 5(1), doi:10.1515/jogs-2015-0016.
- Baldysz, Z., Nykiel, G., Latos, B., Baranowski, D. B., and Figurski, M. (2021). Interannual variability of the GNSS precipitable water vapor in the global tropics. Atmosphere, 12(12):1698, doi:10.3390/atmos12121698.
- Baranowski, D. B., Waliser, D. E., Jiang, X., Ridout, J. A., and Flatau, M. K. (2019). Contemporary GCM fidelity in representing the diurnal cycle of precipitation over the maritime continent. Journal of Geophysical Research: Atmospheres, 124(2):747–769, doi:10.1029/2018jd029474.
- Barriot, J.-P., Serafini, J., and Sichoix, L. (2021). Estimating the 3D time variable water vapor contents of the troposphere from a single GNSS receiver. arXiv preprint arXiv:2102.01858.
- Bawa, S., Isioye, O. A., Mefe Moses, M. M., and Abdulmumin, L. (2022). An appraisal of the ECMWF reanalysis (ERA5) model in estimating and monitoring atmospheric water vapour variability over Nigeria. Geodesy and cartography, 48(3):150–159, doi:10.3846/gac.2022.14777.
- Benevides, P., Catalao, J., and Miranda, P. M. A. (2015). On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Natural Hazards and Earth System Sciences, 15(12):2605–2616, doi:10.5194/nhess-15-2605-2015.
- Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H. (1994). GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of Applied Meteorology and Climatology, 33(3):379–386, doi:10.1175/1520-0450(1994)033<;0379:GMMZWD>2.0.CO;2.
- Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14):15787–15801, doi:10.1029/92jd01517.
- Bi, Y.-M., Mao, J.-T., Liu, X.-Y., Fu, Y., and Li, C.-C. (2006). Remote sensing of the amount of water vapor along the slant path using the ground-base GPS. Chinese Journal of Geophysics, 49(2):335–342.
- Bock, O., Bouin, M., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., and Agusti-Panareda, A. (2007a). Comparison of ground-based GPS precipitable water vapour to independent observations and nwp model reanalyses over africa. Quarterly Journal of the Royal Meteorological Society, 133(629):2011–2027, doi:10.1002/qj.185.
- Bock, O., Bouin, M. N., Doerflinger, E., Collard, P., Masson, F., Meynadier, R., Nahmani, S., Koité, M., Gaptia Lawan Balawan, K., Didé, F., Ouedraogo, D., Pokperlaar, S., Ngamini, J., Lafore, J. P., Janicot, S., Guichard, F., and Nuret, M. (2008). West African Monsoon observed with ground-based GPS receivers during African Monsoon Multidisciplinary Analysis (AMMA). Journal of Geophysical Research: Atmospheres, 113(D21), doi:10.1029/2008jd010327.
- Bock, O., Guichard, F., Janicot, S., Lafore, J. P., Bouin, M., and Sultan, B. (2007b). Multiscale analysis of precipitable water vapor over africa from GPS data and ECMWF analyses. Geophysical Research Letters, 34(9), doi:10.1029/2006gl028039.
- Bock, O., Guichard, F., Meynadier, R., Gervois, S., Agustí-Panareda, A., Beljaars, A., Boone, A., Nuret, M., Redelsperger, J., and Roucou, P. (2010). The large-scale water cycle of the West African monsoon. Atmospheric Science Letters, 12(1):51–57, doi:10.1002/asl.288.
- Bock, O. and Nuret, M. (2009). Verification of NWP model analyses and radiosonde humidity data with GPS precipitable water vapor estimates during AMMA. Weather and Forecasting, 24(4):1085–1101, doi:10.1175/2009waf2222239.1.
- Boniface, K. (2009). Quantification de la vapeur d’eau atmosphérique par GPS et apport à la prévision des événements cévenols. PhD thesis, Université Montpellier II-Sciences et Techniques du Languedoc.
- Boniface, K., Champollion, C., Chery, J., Ducrocq, V., Rocken, C., Doerflinger, E., and Collard, P. (2012). Potential of shipborne GPS atmospheric delay data for prediction of Mediterranean intense weather events. Atmospheric Science Letters, 13(4):250–256, doi:10.1002/asl.391.
- Bosser, P. and Bock, O. (2021). IWV retrieval from ground GNSS receivers during NAWDEX. Advances in Geosciences, 55:13–22, doi:10.5194/adgeo-55-13-2021.
- Boutiouta, S. and Lahcene, A. (2013). Preliminary study of GNSS meteorology techniques in Algeria. International Journal of Remote Sensing, 34(14):5105–5118, doi:10.1080/01431161.2013.786850.
- Chen, P. and Yao, W. (2015). GTm_X: A new version global weighted mean temperature model. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume II, pages 605–611. Springer, doi:10.1007/978-3-662-46635-3_51.
- Combrink, A., Combrinck, W., and Moraal, H. (2004). Near real-time detection of atmospheric water vapour using the SADC GPS network. South African Journal of Science, 100(9):436–442.
- de Haan, S., Holleman, I., and Holtslag, A. A. M. (2009). Real-time water vapor maps from a GPS surface network: Construction, validation, and applications. Journal of Applied Meteorology and Climatology, 48(7):1302–1316, doi:10.1175/2008jamc2024.1.
- Ding, J., Chen, J., Tang, W., and Song, Z. (2022). Spatial–temporal variability of global GNSS-derived precipitable water vapor (1994–2020) and climate implications. Remote Sensing, 14(14):3493, doi:10.3390/rs14143493.
- Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H. (2014). Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde. Atmospheric Measurement Techniques, 7(12):4463–4490, doi:10.5194/amt-7-4463-2014.
- Elouardi, M., Ben Hachmi, M. K., Hdidou, F. Z., and El Yabani, S. (2022). Assessment of integrated water vapor derived from AROME model using GPS data over Morocco. Modeling Earth Systems and Environment, 8(4):4965–4973, doi:10.1007/s40808-022-01432-4.
- Ge, M. and Gendt, G. (2004). Estimation and validation of the IGS absolute antenna phase center variations. In Proc IGS 2004 Workshop and Symposium, Bern.
- Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., and Bender, M. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9(11):5385–5406, doi:10.5194/amt-9-5385-2016.
- Hadas, T., Teferle, F. N., Kazmierski, K., Hordyniec, P., and Bosy, J. (2016). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solutions, 21(3):1069–1081, doi:10.1007/s10291-016-0595-0.
- Hogg, D., Guiraud, F., and Decker, M. (1981). Measurement of excess radio transmission length on earth-space paths. Astronomy and Astrophysics, 95(2):304–307.
- Holloway, C. E. and Neelin, J. D. (2010). Temporal relations of column water vapor and tropical precipitation. Journal of the Atmospheric Sciences, 67(4):1091–1105, doi:10.1175/2009jas3284.1.
- International GNSS Service (2024). Network.igs.org. https://network.igs.org/.
- Isioye, O. A., Combrinck, L., and Botai, J. (2016). Modelling weighted mean temperature in the West African region: Implications for GNSS meteorology: Weighted mean temperature in the West African region. Meteorological Applications, 23(4):614–632, doi:10.1002/met.1584.
- Isioye, O. A., Combrinck, L., and Botai, J. O. (2017). Retrieval and analysis of precipitable water vapour based on GNSS, AIRS, and reanalysis models over Nigeria. International Journal of Remote Sensing, 38(20):5710–5735, doi:10.1080/01431161.2017.1346401.
- Isioye, O. A., Combrinck, L., Botai, J. O., and Munghemezulu, C. (2015). The potential for observing African weather with GNSS remote sensing. Advances in Meteorology, 2015:1–16, doi:10.1155/2015/723071.
- Jiang, C., Chen, S., Wang, S., Gao, X., Zhu, H., Lu, Y., and Liu, G. (2024). A grid model of direct conversion between zenith tropospheric delay and precipitable water vapor in tropical regions. GPS Solutions, 28(3), doi:10.1007/s10291-024-01672-0.
- Jones, J., Guerova, G., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., Pacione, R., and Van Malderen, R. (2020). Advanced GNSS tropospheric products for monitoring severe weather events and climate. COST action ES1206 final action dissemination report, (2019):563, doi:10.1007/978-3-030-13901-8.
- Kawo, A., Van Schaeybroeck, B., Van Malderen, R., and Pottiaux, E. (2023). Precipitable water vapor in regional climate models over Ethiopia: Model evaluation and climate projections. Climate Dynamics, doi:10.1007/s00382-023-06855-y.
- Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, 55(12):2049–2075, doi:10.1016/j.infsof.2013.07.010.
- Koji, A. K., Van Malderen, R., Pottiaux, E., and Van Schaeybroeck, B. (2022). Understanding the present-day spatiotemporal variability of precipitable water vapor over Ethiopia: A comparative study between ERA5 and GPS. Remote Sensing, 14(3):686, doi:10.3390/rs14030686.
- Koome, D., Ogaja, C., and Rubinov, E. (2019). Developing Africa one CORS at a time. In FIF Working Week 2019, Geospatial Information for a Smarter Life and Environmental Resilience, 22–24 April, Hanoi, Vietnam.
- Koulali, A., Ouazar, D., Bock, O., and Fadil, A. (2012). Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco. Atmospheric Research, 104–105:273–291, doi:10.1016/j.atmosres.2011.11.002.
- Li, L., Wu, S., Zhang, K., Wang, X., Li, W., Shen, Z., Zhu, D., He, Q., and Wan, M. (2021). A new ZHD model for real-time retrievals of GNSS-PWV. doi:10.5194/amt-2021-113.
- Li, X., Dick, G., Lu, C., Ge, M., Nilsson, T., Ning, T., Wickert, J., and Schuh, H. (2015). Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations. IEEE Transactions on Geoscience and Remote Sensing, 53(12):6385–6393, doi:10.1109/tgrs.2015.2438395.
- Lu, C., Li, X., Nilsson, T., Ning, T., Heinkelmann, R., Ge, M., Glaser, S., and Schuh, H. (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. Journal of Geodesy, 89(9):843–856, doi:10.1007/s00190-015-0818-0.
- Mateo, S. (2020). Procédure pour conduire avec succès une revue de littérature selon la méthode PRISMA. Kinésithérapie, la Revue, 20(226):29–37, doi:10.1016/j.kine.2020.05.019.
- Mengistu Tsidu, G., Blumenstock, T., and Hase, F. (2015). Observations of precipitable water vapour over complex topography of ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 8(8):3277–3295, doi:10.5194/amt-8-3277-2015.
- Mlawa A., M. and Saria E. E, S. (2023). Atmospheric water vapour determination using GPS signals for numeric weather prediction in Tanzania. Journal of Geosciences and Geomatics, 11(3):88–96, doi:10.12691/jgg-11-3-3.
- Moradi, I., Soden, B., Ferraro, R., Arkin, P., and Vömel, H. (2013). Assessing the quality of humidity measurements from global operational radiosonde sensors. Journal of Geophysical Research: Atmospheres, 118(14):8040–8053, doi:10.1002/jgrd.50589.
- Namaoui, H. (2017). Quantification de la vapeur d’eau dans la basse atmosphère à partir des techniques de radiolocalisation. PhD thesis, Université Mohamed Boudiaf des Sciences et de la Technologie-Mohamed Boudiaf d’Oran.
- Namaoui, H., Kahlouche, S., Belbachir, A. H., Van Malderen, R., Brenot, H., and Pottiaux, E. (2017). GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Advances in Atmospheric Sciences, 34(5):623–634, doi:10.1007/s00376-016-6111-1.
- Nambiema, A., Fouquet, J., Guilloteau, J., and Descatha, A. (2021). La revue systématique et autres types de revue de la littérature: qu’est-ce que c’est, quand, comment, pourquoi? Archives des Maladies Professionnelles et de l’Environnement, 82(5):539–552, doi:10.1016/j.admp.2021.03.004.
- Ojegbile, B., Okolie, C., Omogunloye, O., Abiodun, O., and Olaleye, J. (2023). The dynamics of ERA5 and GNSS-derived precipitable water vapour in the climatic zones of Nigeria. Dynamics, 7(2):372–394, doi:10.36263/nijest.2023.02.0429.
- Osah, S., Acheampong, A. A., Fosu, C., and Dadzie, I. (2021). Evaluation of zenith tropospheric delay derived from ray-traced VMF3 product over the West African region using GNSS observations. Advances in Meteorology, 2021:1–14, doi:10.1155/2021/8836806.
- Panetier, A., Bosser, P., and Khenchaf, A. (2023). Sensitivity of ship-borne GNSS estimates to processing modeling based on simulated dataset. Sensors, 23(14):6605, doi:10.3390/s23146605.
- Reverdy, M. (2008). GPS estimates of atmospheric parameters: Analysis of the spatial and temporal variability of the water vapor. PhD thesis, Université Blaise Pascal – Clermont-Ferrand II.
- Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. The use of artificial satellites for geodesy, 15:247–251, doi:10.1029/GM015p0247.
- Song, D.-S. and Boutiouta, S. (2012). Determination of Algerian weighted mean temperature model for forthcoming GNSS meteorology application in Algeria. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 30(6_2):615–622, doi:10.7848/ksgpc.2012.30.6-2.615.
- Ssenyunzi, R. C., Oruru, B., D’ujanga, F. M., Realini, E., Barindelli, S., Tagliaferro, G., von Engeln, A., and van de Giesen, N. (2020). Performance of ERA5 data in retrieving precipitable water vapour over East African tropical region. Advances in Space Research, 65(8):1877–1893, doi:10.1016/j.asr.2020.02.003.
- Ssenyunzi, R. C., Oruru, B., and Mutonyi D’ujanga, F. (2021). Linear regression models to predict the tropospheric parameters at the Global Positioning systems’ sites over the East African region. East African Journal of Science, Technology and Innovation, 2(3), doi:10.37425/eajsti.v2i3.274.
- Swafiyudeen, B., Sa’i, U. I., Adamu, B., Zailani, A. A., Musa, A. A., and Nura, S. (2021). Modelling precipitable water vapour (PWV) over Nigeria from ground-based GNSS. Geoplanning: Journal of Geomatics and Planning, 8(1):41–50, doi:10.14710/geoplanning.8.1.41-50.
- Teunissen, P. J. G. and Montenbruck, O., editors (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing, doi:10.1007/978-3-319-42928-1.
- Van Malderen, R., Pottiaux, E., Stankunavicius, G., Beirle, S., Wagner, T., Brenot, H., Bruyninx, C., and Jones, J. (2022). Global spatiotemporal variability of integrated water vapor derived from GPS, GOME/SCIAMACHY and ERA-Interim: Annual cycle, frequency distribution and linear trends. Remote Sensing, 14(4):1050, doi:10.3390/rs14041050.
- Vaquero-Martínez, J. and Antón, M. (2021). Review on the role of GNSS meteorology in monitoring water vapor for atmospheric physics. Remote Sensing, 13(12):2287, doi:10.3390/rs13122287.
- VERBI Software (2024). MAXQDA QDA software package for Windows and Mac. MAXQDA. https://www.maxqda.com/products/maxqda.
- Wang, J., Cole, H. L., Carlson, D. J., Miller, E. R., Beierle, K., Paukkunen, A., and Laine, T. K. (2002). Corrections of humidity measurement errors from the Vaisala RS80 radiosonde — Application to TOGA COARE data. Journal of Atmospheric and Oceanic Technology, 19(7):981–1002, doi:10.1175/1520-0426(2002)019<;0981:COHMEF>2.0.CO;2.
- Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X., Choi, D., Cheang, W., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E. (1998). Factors affecting the detection of trends: Statistical considerations and applications to environmental data. Journal of Geophysical Research: Atmospheres, 103(D14):17149–17161, doi:10.1029/98jd00995.
- WHO (2024). Devastating West and Central Africa floods affect over 4 million people, raise health risks, World Health Organization, Regional Office for Africa. https://www.afro.who.int/news/devastating-west-and-central-africa-floods-affect-over-4-million-people-raise-health-risks.
- Wonnacott, R. T. and Merry, C. L. (2006). The use of GPS for the estimation of precipitable water vapour for weather forecasting and monitoring in South Africa. Survey Review, 38(301):594–607, doi:10.1179/sre.2006.38.301.594.
- Wu, Z., Lu, C., Tan, Y., Zheng, Y., Liu, Y., Liu, Y., and Jin, K. (2023). Real-time GNSS tropospheric delay estimation with a novel global random walk processing noise model (grm). Journal of Geodesy, 97(12), doi:10.1007/s00190-023-01780-8.
- Yao, Y., Xu, C., Zhang, B., and Cao, N. (2014). GTm-III: A new global empirical model for mapping zenith wet delays onto precipitable water vapour. Geophysical Journal International, 197(1):202–212, doi:10.1093/gji/ggu008.
- Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin, X., Van Malderen, R., Mayer, M., Jiang, W., Awange, J., and Kutterer, H. (2023). An enhanced integrated water vapour dataset from more than 10000 global ground-based GPS stations in 2020. Earth System Science Data, 15(2):723–743, doi:10.5194/essd-15-723-2023.
