Have a personal or library account? Click to login
The comparison of distance metrics in descriptor matching methods utilised in TLS-SfM point cloud registration Cover

The comparison of distance metrics in descriptor matching methods utilised in TLS-SfM point cloud registration

Open Access
|Mar 2025

References

  1. Abbate, E., Sammartano, G., and Spanò, A. (2019). Prospective upon multi-source urban scale data for 3D documentation and monitoring of urban legacies. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11:11–19, doi:10.5194/isprs-archives-xlii-2-w11-11-2019.
  2. Aggarwal, C. C. et al. (2015). Data mining: The textbook, volume 1. Springer.
  3. Alba, M., Barazzetti, L., Scaioni, M., and Remondino, F. (2012). Automatic registration of multiple laser scans using panoramic rgb and intensity images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-5/W12:49–54, doi:10.5194/isprsarchives-xxxviii-5-w12-49-2011.
  4. Arif, R. and Essa, K. (2017). Evolving techniques of documentation of a world heritage site in Lahore. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5:33–40, doi:10.5194/isprs-archives-xlii-2-w5-33-2017.
  5. Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded Up Robust Features, pages 404–417. Springer Berlin Heidelberg, doi:10.1007/11744023_32.
  6. Berenyi, A., Lovas, T., and Barsi, A. (2010). Terrestrial Laser Scanning – Civil engineering applications. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5):80–85.
  7. Bianco, S., Ciocca, G., and Marelli, D. (2018). Evaluating the performance of Structure from Motion pipelines. Journal of Imaging, 4(8):98, doi:10.3390/jimaging4080098.
  8. Cheng, L., Chen, S., Liu, X., Xu, H., Wu, Y., Li, M., and Chen, Y. (2018). Registration of laser scanning point clouds: A review. Sensors, 18(5):1641, doi:10.3390/s18051641.
  9. Cipriani, L., Bertacchi, S., and Bertacchi, G. (2019). An optimised workflow for the interactive experience with cultural heritage through reality-based 3d models: Cases study in archaeological and urban complexes. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11:427–434, doi:10.5194/isprs-archives-xlii-2-w11-427-2019.
  10. Dong, Z., Yang, B., Liang, F., Huang, R., and Scherer, S. (2018). Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS Journal of Photogrammetry and Remote Sensing, 144:61–79, doi:10.1016/j.isprsjprs.2018.06.018.
  11. Giżyńska, J., Komorowska, E., and Kowalczyk, M. (2022). The comparison of photogrammetric and terrestrial laser scanning methods in the documentation of small cultural heritage object – case study. Journal of Modern Technologies for Cultural Heritage Preservation, 1(1), doi:10.33687/jmtchp.001.01.0013.
  12. Grussenmeyer, P., Alby, E., Landes, T., Koehl, M., Guillemin, S., Hullo, J. F., Assali, P., and Smigiel, E. (2012). Recording approach of heritage sites based on merging point clouds from high resolution photogrammetry and terrestrial laser scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5:553–558, doi:10.5194/isprsarchives-xxxix-b5-553-2012.
  13. Han, X.-F., Sun, S.-J., Song, X.-Y., and Xiao, G.-Q. (2018). 3D point cloud descriptors in hand-crafted and deep learning age: State-of-the-art. arXiv preprint arXiv:1802.02297.
  14. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Procedings of the Alvey Vision Conference 1988, AVC 1988. Alvey Vision Club, doi:10.5244/c.2.23.
  15. Janßen, J., Kuhlmann, H., and Holst, C. (2023). Keypoint-based registration of tls point clouds using a statistical matching approach. Journal of Applied Geodesy, 18(2):267–284, doi:10.1515/jag-2022-0058.
  16. Kang, Z., Li, J., Zhang, L., Zhao, Q., and Zlatanova, S. (2009). Automatic registration of terrestrial laser scanning point clouds using panoramic reflectance images. Sensors, 9(4):2621–2646, doi:10.3390/s90402621.
  17. Karwel, A. K. and Markiewicz, J. (2022). The methodology of the archival aerial image orientation based on the SfM method. Sensors and Machine Learning Applications, 1(2), doi:10.55627/smla.001.02.0015.
  18. Kowalska, M. and Kowalczyk, M. (2024). Modelling of the exterior surface of a historic and contemporary object by digital photos and laser scanning. Journal of Modern Technologies for Cultural Heritage Preservation, 3(3), doi:10.69534/jmtchp/193893.
  19. Kuzyk, Z. (2023). The use of modern measurement methods in the inventory of endangered cultural heritage objects in lviv. Journal of Modern Technologies for Cultural Heritage Preservation, 2(2), doi:10.69534/jmtchp/191347.
  20. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110, doi:10.1023/b:visi.0000029664.99615.94.
  21. Markiewicz, J. (2024). Evaluation of 2d affine — hand-crafted detectors for feature-based tls point cloud registration. Reports on Geodesy and Geoinformatics, 117(1):69–88, doi:10.2478/rgg-2024-0008.
  22. Markiewicz, J., Kot, P., Markiewicz, L., and Muradov, M. (2023). The evaluation of hand-crafted and learned-based features in Terrestrial Laser Scanning-Structure-from-Motion (TLSSfM) indoor point cloud registration: the case study of cultural heritage objects and public interiors. Heritage Science, 11(1), doi:10.1186/s40494-023-01099-9.
  23. Markiewicz, J., Podlasiak, P., and Zawieska, D. (2015). A new approach to the generation of orthoimages of cultural heritage objects—integrating tls and image data. Remote Sensing, 7(12):16963–16985, doi:10.3390/rs71215869.
  24. Markiewicz, J. and Zawieska, D. (2019). The influence of the cartographic transformation of TLS data on the quality of the automatic registration. Applied Sciences, 9(3):509, doi:10.3390/app9030509.
  25. math.net (2024). Distance metrics, https://numerics.mathdotnet.com/Distance.html.
  26. Moussa, W., Abdel-Wahab, M., and Fritsch, D. (2012). An automatic procedure for combining digital images and laser scanner data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B5:229–234, doi:10.5194/isprsarchives-xxxix-b5-229-2012.
  27. Mukupa, W., Roberts, G. W., Hancock, C. M., and Al-Manasir, K. (2016). A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Survey Review, pages 1–18, doi:10.1080/00396265.2015.1133039.
  28. NumPy (2024). Numpy – the fundamental package for scientific computing with python, https://numpy.org/.
  29. OpenCV (2018). http://opencv.org/.
  30. Piermattei, L., Karel, W., Wang, D., Wieser, M., Mokroš, M., Surový, P., Koreň, M., Tomaštík, J., Pfeifer, N., and Hollaus, M. (2019). Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sensing, 11(8):950, doi:10.3390/rs11080950.
  31. Rashidi, M., Mohammadi, M., Sadeghlou Kivi, S., Abdolvand, M. M., Truong-Hong, L., and Samali, B. (2020). A decade of modern bridge monitoring using Terrestrial Laser Scanning: Review and future directions. Remote Sensing, 12(22):3796, doi:10.3390/rs12223796.
  32. Remondino, F. and Stylianidis, E. (2016). 3D recording, documentation and management of cultural heritage, volume 2. Whittles Publishing Dunbeath, UK.
  33. SciPy (2024). Scipy – fundamental algorithms for scientific computing in python, https://scipy.org/.
  34. Tobiasz, A., Markiewicz, J., Łapiński, S., Nikel, J., Kot, P., and Muradov, M. (2019). Review of methods for documentation, management, and sustainability of cultural heritage. case study: Museum of king jan iii’s palace at wilanów. Sustainability, 11(24):7046, doi:10.3390/su11247046.
  35. Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815–830, doi:10.1109/tpami.2009.77.
  36. Tuytelaars, T. and Mikolajczyk, K. (2007). Local invariant feature detectors: A survey. Foundations and Trends® in Computer Graphics and Vision, 3(3):177–280, doi:10.1561/0600000017.
  37. Urban, S. and Weinmann, M. (2015). Finding a good feature detector-descriptor combination for the 2D keypoint-based registration of TLS point clouds. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, II-3/W5:121–128, doi:10.5194/isprsannals-ii-3-w5-121-2015.
  38. Yu, G. and Morel, J.-M. (2011). Asift: An algorithm for fully affine invariant comparison. Image Processing On Line, 1:11–38, doi:10.5201/ipol.2011.my-asift.
DOI: https://doi.org/10.2478/rgg-2025-0006 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 39 - 61
Submitted on: Nov 8, 2024
Accepted on: Jan 29, 2025
Published on: Mar 21, 2025
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Jakub Markiewicz, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.