References
- Bermejo-Solera, M. and Otero, J. (2009). Simple and highly accurate formulas for the computation of Transverse Mercator coordinates from longitude and isometric latitude. Journal of Geodesy, 83(1):1–12.
- Bowring, B. (1990). The Transverse Mercator projection–a solution by complex numbers. Survey Review, 30(237):325–342, doi: 10.1179/003962678791965183.
- Bowring, B. (1993a). Applicable complex and unreal geodesy (Section 1). Survey Review, 32(249):145–158, doi: 10.1179/sre.1993.32.249.145.
- Bowring, B. (1993b). Applicable complex and unreal geodesy (Section 2). Survey Review, 32(250):200–212, doi: 10.1179/sre.1993.32.250.200.
- Bugayevskiy, L. M. and Snyder, J. (1995). Map projections: A reference manual. CRC Press.
- Cory, M., Morgan, R., Bray, C., and Greenway, I. (2001). A new coordinate system for Ireland. In International Federation of Surveyors International Conference Proceedings, FIG XX Congress Melbourne, March, pages 6–11.
- Deakin, R., Hunter, M., and Karney, C. (2010). The Gauss-Krüger projection. In Proceedings of the 23rd Victorian regional survey conference, Warrnambool, 10–12 September, pages 1–20.
- Dennis, M. L. (2018). The state plane coordinate system: History, policy, and future directions. NOAA Special Publication NOS NGS, 13.
- Draheim, H. (1953). Allgemeine Formeln zur Berechnung der Richtungreduktionen und der Längereduktionen ausgewählter konformer Abbildungen: ein Beitrag zur Untersuchung der Formtreue der Bildkurven geodätischer Linien und zur Lösung der geodätischen Hauptaufgaben mit Hilfe geodätischer Koordinaten. Number 7.
- Engsager, K. and Poder, K. (2007). A highly accurate world wide algorithm for the transverse Mercator mapping (almost). In Proceedings of XXIII international cartographic conference (ICC2007), 4–10 August, Moscow, pages 4–10.
- Gojamanov, M. H. and Ismayilov, A. I. (2019). Experimental justification of implementation of the composite projection in Azerbaijan. Geodesy and Cartography, 68(2), doi: 10.24425/gac.2019.128462.
- Grafarend, E. (1995). The optimal universal transverse Mercator projection. In Geodetic Theory Today, pages 51–51. Springer, doi: 10.1007/978-3-642-79824-5_13.
- Grossmann, W. (1976). Geodatische Rechnungen und Abbildungen in der Landesvermessung. Stuttgart: Wittwer.
- Guo, J.-C., Shen, W.-B., and Ning, J.-S. (2020). Development of Lee's exact method for Gauss–Krüger projection. Journal of Geodesy, 94(6):1–16, doi: 10.1007/s00190-020-01388-2.
- Habib, M. (2008). Proposal for developing the Syrian stereographic projection. Survey Review, 40(307):92–101, doi: 10.1179/003962608X253547.
- Hartzell, P., Strunk, L., and Ghilani, C. (2002). Pennsylvania State plane coordinate system: converting to a single zone. Surveying and Land Information Science, 62(2):95–103.
- Hooijberg, M. (2012). Practical Geodesy: Using Computers. Springer Science & Business Media.
- Huryeu, Y. and Padshyvalau, U. (2007). Automated design of coordinate system for long linear objects. In Proceedings of the 11th ScanGIS2007 Conference, pages 147–155.
- Huryeu, Y. and Padshyvalau, U. (2008). How to create the best suitable map projection. In FIG Working Week, Stockholm.
- Ingwersen, M. (1996). Gauscher und Georaphischer Koordinaten mit Rekursionsformeln. Zeitschrift für Vermessungswesen, 3:345–356.
- Jenny, B. (2012). Adaptive composite map projections. IEEE Transactions on Visualization and Computer Graphics, 18(12):2575–2582, doi: 10.1109/TVCG.2012.192.
- Jenny, B. and Šavrič, B. (2018). Enhancing adaptive composite map projections: Wagner transformation between the Lambert azimuthal and the transverse cylindrical equal-area projections. Cartography and Geographic Information Science, 45(5):456–463, doi: 10.1080/15230406.2017.1379036.
- Karney, C. F. (2011). Transverse Mercator with an accuracy of a few nanometers. Journal of Geodesy, 85(8):475–485, doi: 10.1007/s00190-011-0445-3.
- Kaya, A. (1994). An alternative formula for finding the geodetic latitude from the isometric latitude. Survey Review, 32(253):450–452, doi: 10.1179/sre.1994.32.253.450.
- Klotz, J. (1993). Eine analytische Lösung der Gauß-Krüger-Abbildungen. Zeitschrift für Vermessungswesen, 118(3):106–116.
- Lee, L. P. (1962). The transverse Mercator projection of the entire spheroid. Empire Survey Review, 16(123):208–217, doi: 10.1179/sre.1962.16.123.208.
- Lee, L. P. (1963). Scale and convergence in the transverse Mercator projection of the entire spheroid. Survey Review, 17(127):49–51, doi: 10.1179/sre.1963.17.127.49.
- LSMMIPR (2020). Large Scale Map And Map Information Production Regulation (in Turkish). The Union Of Turkish Engineers And Architects (TMMOB), Chamber of Survey and Cadastre Engineers, Ankara, Turkey.
- Milnor, J. (1969). A problem in cartography. The American Mathematical Monthly, 76(10):1101–1112, doi: 10.1080/00029890.1969.12000424.
- Mittermayer, E. (1993). Die Gauss'schen Koordinaten in sphärischer und ellipsoidischer Approximation/Konforme Abbildung. Zeitschrift für Vermessungswesen, 118:345–356.
- Nestorov, I. G. (1997). CAMPREL: a new adaptive conformal cartographic projection. Cartography and Geographic Information Systems, 24(4):221–227, doi: 10.1559/152304097782439295.
- Padshyvalau, U., Matkin, A., and Rymasheuskaja, M. (2005). Principles of design of projections for geographical information technologies. In Proceedings of the 10th Scandinavian Research Conference on Geographical Information Science/Scan GIS, Stockholm, pages 137–145.
- Pędzich, P. (2005). Conformal projection with minimal distortions. In XXII International Cartographic Conference Proceedings, FIG, 9–16 July, Spain.
- Šavrič, B. and Jenny, B. (2014). A new pseudocylindrical equal-area projection for adaptive composite map projections. International Journal of Geographical Information Science, 28(12):2373–2389, doi: 10.1080/13658816.2014.924628.
- Snyder, J. P. (1987). Map projections. A working manual. Washington, DC. US GEOLOGICAL SURVEY PROFESSIONAL PAPER 1395.
- Thomas, P. D. (1952). Conformal projections in geodesy and cartography, volume 4. US Government Printing Office.
- Thompson, E. H. (1975). A note on conformal map projections. Survey Review, 23(175):17–28, doi: 10.1179/sre.1975.23.175.17.
- Turiño, C. E. (2004). Accuracy of the coefficient expansion of the Transverse Mercator Projection. International Journal of Geographical Information Science, 18(6):559–576, doi: 10.1080/13658810410001701996.
- Turiño, C. E. (2008). Gauss Krüger projection for areas of wide longitudinal extent. International Journal of Geographical Information Science, 22(6):703–719, doi: 10.1080/13658810701602286.
- Vaníček, P. and Najafi-Alamdari, M. (2004). Proposed new cartographic mapping for Iran. Journal of Spatial Science, 49(2):31–42, doi: 10.1080/14498596.2004.9635020.
- Veverka, B. (2004). Křovák's projection and its use for the Czech Republic and the Slovak Republic. 50 years of the Research Institute of Geodesy, Topography and Cartography, 50:173–179.
- Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176):88–93, doi: 10.1179/sre.1975.23.176.88.
- Yang, Q., Snyder, J., and Tobler, W. (1999). Map projection transformation: principles and applications. CRC Press.
- Yildirim, F. (2004). Examining Alternative Methods for Zone Based UTM System. PhD thesis, KTU Fen Bilimleri Enstitusu, Trabzon, Turkey.
