Have a personal or library account? Click to login
Proposed single-zone map projection system for Turkey Cover

Proposed single-zone map projection system for Turkey

By: Faruk Yildirim and  Fatih Kadi  
Open Access
|Jan 2022

Figures & Tables

Figure 1

UTM zones for Turkey
UTM zones for Turkey

Figure 2

Distortion sizes for Mittermayer method: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2°; (d) the distance (S – s) distortion, contour intervals 75 cm.
Distortion sizes for Mittermayer method: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2°; (d) the distance (S – s) distortion, contour intervals 75 cm.

Figure 3

Distortion sizes for LCC2: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.
Distortion sizes for LCC2: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.

Figure 4

Distortion sizes for CP: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.
Distortion sizes for CP: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.

Figure 5

Distortion sizes for double projection: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.
Distortion sizes for double projection: (a) scale factor, counter interval 0.0005; (b) meridian convergence, contour intervals 1°; (c) the arc to chord (T – t) distortion, contour intervals 0.2″; (d) the distance (S – s) distortion, contour intervals 40 cm.

Figure 6

Correction values based on correction formulas for accuracy analysis in CP: (a) Ss difference for 1 km, counter interval 2 mm; (b) Ss difference for 2 km, counter interval 2 mm; (c) Tt difference for 1 km, contour intervals 0.001″; (d) Tt difference for 2 km, contour intervals 0.001″.
Correction values based on correction formulas for accuracy analysis in CP: (a) Ss difference for 1 km, counter interval 2 mm; (b) Ss difference for 2 km, counter interval 2 mm; (c) Tt difference for 1 km, contour intervals 0.001″; (d) Tt difference for 2 km, contour intervals 0.001″.

Figure 7

Scale correction factor for CP
Scale correction factor for CP

(B, L)Ellipsoid geographical latitude and longitude;
(φ, λ)Sphere geographical latitude and longitude;
(B0, L0)Central meridian (latitude) and longitude of central meridian;
(x, y)Projected coordinates or plane coordinates;
(N, E)Northing, Easting map of scale or sheet coordinates;
qIsometric latitude for ellipsoid: atanh(sin B) – e atanh(e sin B);
ωIsometric latitude for sphere: atanh(sin φ);
q, lIsometric coordinates;
lLL0;
AEllipsoid azimuth;
SEllipsoid geodetic or distance on ellipsoid;
sPlane or projection distance;
tPlane or projection azimuth;
γGrid convergence of ellipsoid;
(Tt)The arc to chord distortion of projection (At–γ);
(Ss)Distance distortion of projection (Ss);
(Tt)mapThe arc to chord correction calculated from (x, y);
(Ss)mapDistance correction calculated from (x, y);
aSemi-major axis of ellipsoid;
bSemi-minor axis of ellipsoid;
cPolar radius of curvature;
e2Eccentricity of ellipsoid squared;
e′2Second eccentricity of ellipsoid squared;
e2.71828182845904523. . . Euler's number;
GMeridian arc length from equator to latitude, meridian distance;
MRadius of curvature in the meridian:
c/(1 + e2 cos2 B)3/2;
NRadius of curvature in the prime vertical: c/(1 + e2 cos2 B)1/2;
RRadius of Gauss sphere: (MN)1/2 = c/(1 + e2 cos2 B);
rRadius of curvature of the parallel (N cos B);
η2e2 cos2 B;
ttan B;
mPoint grid scale factor;
m0Grid scale factor assigned to central meridian (longitude) or parallels (latitude);
(B1, B2)Standard parallels for Lambert conformal conic.

Coefficients for correction formulas

ktksk
1−1.230817046856762e-143.410737419053955e-04
2−4.102723489522539e-15−1.230817046856762e-14
3−1.560602822242498e-21−1.230817046856762e-14
4−7.675969852812854e-22−5.117313235208569e-22
57.803014111212491e-221.560602822242498e-21
6−2.882524686831016e-287.799576438254665e-29
79.649191199496467e-292.876383454639922e-28
82.882524686831016e-28−4.824471121337579e-29

ak coefficients in metres

GKLCC2CP

kHayford (ED50 Datum)GRS80 (ITRF Datum)Hayford (ED50 Datum)GRS80 (ITRF Datum)Hayford (ED50 Datum)GRS80 (ITRF Datum)
14963550.541404963327.338634961856.517024961633.361224961858.211054961635.05520
2−1561831.78385−1561761.55083−1561480.06295−1561409.82430−1561480.41467−1561410.17603
3−174039.01315−174022.53500327595.12206327580.38357327093.48792327078.78065
4344383.18219344355.40058−51546.55823−51544.23875−51150.62849−51148.33911
5−97650.60029−97639.868016488.613506488.321486384.474296384.19329
6−37371.53049−37368.38135−680.64850−680.61786−717.33938−717.30563
739232.3513439,226.4943261.1993961.19663100.37054100.36193
8−7671.34989−7668.97005−4.81481−4.81460−12.48135−12.47875
9−6850.12639−6849.309000.336710.33670−6.51375−6.51295
105154.825675153.41787−0.02119−0.021195.133655.13225

Numerical values for CP (for 1 km) (k1 = 0_001, k2 = 1 − k1)

B [°]L [°]XCP[m]YCP[m]M m0=1m {m_0} = {1 \over m} γ [°](Tt) [″](T-t)mapTt[m](Ss) [m](S-s)mapSs [m]
35.526.0−343547.200−861653.0971.0015020.998500−5.978806280.68060.68050.0000−1.499−1.489−0.010
36.026.5−292879.879−810972.3221.0010180.998983−5.664193310.58500.5852−0.0002−1.015−1.005−0.010
36.527.0−241925.869−760876.1191.0006070.999394−5.349573280.48900.4893−0.0003−0.604−0.595−0.009
37.027.5−190685.986−711365.6361.0002690.999731−5.034946240.39240.3927−0.0003−0.267−0.259−0.008
37.528.0−139161.028−662442.0721.0000050.999995−4.720312230.29520.2955−0.0003−0.0040.003−0.007
38.028.5−87351.773−614106.6790.9998161.000184−4.405671300.19740.1976−0.00020.1850.191−0.006
38.529.0−35258.976−566360.7620.9997021.000298−4.091023500.09890.0990−0.00010.2990.303−0.005
39.029.517116.629−519205.6770.9996621.000338−3.77636888−0.0002−0.00020.00000.3380.341−0.003
39.530.069774.333−472642.8390.9996991.000301−3.46170748−0.1000−0.10020.00020.3010.303−0.002
40.030.5122713.451−426673.7120.9998121.000188−3.14703936−0.2006−0.20090.00030.1870.188−0.001
40.531.0175933.327−381299.8201.0000020.999998−2.83236456−0.3019−0.30240.0005−0.003−0.0040.001
41.031.5229433.329−336522.7411.0002690.999731−2.51768313−0.4040−0.40470.0007−0.271−0.2730.002
42.032.0338751.594−290207.6071.0010400.998961−2.20301786−0.6108−0.61170.0009−1.043−1.0470.004
42.532.5392851.626−246933.1821.0015450.998457−1.88831991−0.7155−0.71660.0011−1.548−1.5530.005
35.533.0−385425.899−227133.6561.0014940.998508−1.573362680.68160.68120.0004−1.490−1.484−0.006
36.033.5−331015.720−180494.9671.0010100.998991−1.258704100.58610.58550.0005−1.007−1.002−0.005
36.534.0−276364.523−134461.1471.0006000.999401−0.944038510.49000.48940.0007−0.597−0.593−0.004
37.034.5−221473.213−89033.2791.0002630.999737−0.629365940.39340.39260.0008−0.261−0.258−0.003
38.035.0−110853.214−43907.7300.9998111.000189−0.314689870.19830.19740.00090.1890.191−0.002
39.035.50.0000.0000.9996591.0003410.000000000.0007−0.00040.00110.3410.3410.000
39.536.055609.95442993.4280.9996961.0003040.31470008−0.0992−0.10040.00120.3030.3030.001
40.036.5111461.66885375.8870.9998101.0001900.62940691−0.1997−0.20100.00130.1890.1880.002
40.537.0167554.386127145.9001.0000001.0000000.94412043−0.3010−0.30240.0014−0.002−0.0040.002
41.037.5223887.372168301.9321.0002680.9997321.25884059−0.4031−0.40470.0015−0.270−0.2730.003
41.538.0280459.918208842.3891.0006150.9993861.57356734−0.5061−0.50770.0016−0.617−0.6210.004
42.038.5337271.342248765.6181.0010400.9989611.88830062−0.6099−0.61160.0018−1.043−1.0470.004
42.539.0394320.989288069.9041.0015450.9984572.20304037−0.7145−0.71640.0019−1.549−1.5540.005
35.539.5−380561.376363342.7201.0014950.9985072.517381640.68270.68120.0015−1.491−1.484−0.007
36.040.5−320609.223451047.1991.0010120.9989893.146763970.58720.58560.0016−1.009−1.002−0.007
36.541.0−262583.287492747.0971.0006030.9993983.461480110.49120.48950.0016−0.600−0.593−0.007
37.041.5−204364.419533824.3641.0002660.9997343.776203400.39460.39290.0017−0.264−0.258−0.006
37.542.0−145953.593574277.9321.0000040.9999964.090933800.29740.29560.0018−0.0030.004−0.006
38.042.5−87351.773614106.6790.9998161.0001844.405671300.19960.19770.00190.1850.191−0.006
38.543.0−28559.910653309.4280.9997031.0002974.720415840.10110.09910.00200.2980.304−0.006
39.043.530421.060691884.9460.9996651.0003355.035167380.0020−0.00020.00230.3350.341−0.006
39.544.089590.217729831.9410.9997031.0002975.34992587−0.0978−0.10030.00250.2970.303−0.006
40.044.5148946.655767149.0650.9998171.0001835.66469127−0.1983−0.20120.00290.1820.189−0.007
42.545.0429557.127780679.3881.0015520.9984515.97971209−0.7135−0.71810.0046−1.555−1.551−0.004

bk coefficients

GKLCC2CP

kHayford (ED50 Datum)GRS80 (ITRF Datum)Hayford (ED50 Datum)GRS80 (ITRF Datum)Hayford (ED50 Datum)GRS80 (ITRF Datum)
12.01468684898033e-072.01477745023166e-072.01537468197565e-072.01546532602613e-072.01537399414265e-072.01546463815034e-07
21.27719412250272e-141.27730899691869e-141.27821479148768e-141.27832976273027e-141.27821377081870e-141.27832874196446e-14
31.90606580617672e-211.90630871057434e-211.08091269101801e-211.08105852690209e-211.08173784413317e-211.08188377708576e-21
42.33217785338216e-282.33259302576196e-281.02832386626856e-281.02850885526054e-281.02962772025567e-281.02981293943104e-28
53.40288110341843e-353.40362666718644e-351.04351317940802e-351.04374783445450e-351.04587254733203e-351.04610771328723e-35
64.92399104670312e-424.92529126527513e-421.10304880523434e-421.10334646159951e-421.10686974747581e-421.10716840640319e-42
77.46687045549524e-497.46916636213681e-491.19929486733841e-491.19967244054757e-491.20556244292657e-491.20594193446916e-49
81.14705437919241e-551.14745779438984e-551.33110423181849e-561.33158317899727e-561.34124367137860e-561.34172617376217e-56
91.79545605447638e-621.79616622523578e-621.50085099606334e-631.50145853535200e-631.51730470561204e-631.51791873906901e-63
102.84208801069137e-692.84333725613141e-691.71339747802719e-701.71416813538263e-701.74010496065608e-701.74088733980856e-70
DOI: https://doi.org/10.2478/rgg-2021-0006 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 35 - 45
Submitted on: Aug 12, 2021
Accepted on: Nov 29, 2021
Published on: Jan 3, 2022
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Faruk Yildirim, Fatih Kadi, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.