Have a personal or library account? Click to login
Possibility of applying geoinformation multiagent optimisation for planning the development of road networks Cover

Possibility of applying geoinformation multiagent optimisation for planning the development of road networks

Open Access
|Oct 2021

References

  1. Burshtynska, H. (2001). Comparative analysis of the construction of digital terrain models using approximation functions. Geodesy, cartography and ariel photography, 61:137–148.
  2. Chulin, H. and Geng, K. K. (2016). Route planning based on cloud-points maps and improved ant-colony algorithm. Technical Sciences, Izvestiya Tula State University, pages 80–88.
  3. Dorigo, M. and Stützle, T. (2010). Ant Colony Optimization: Overview and Recent Advances, pages 227–263. Springer US, Boston, MA, doi: 10.1007/978-1-4419-1665-5_8.
  4. Huang, G., Cai, Y., and Cai, H. (2018). Multi-agent ant colony optimization for vehicle routing problem with soft time windows and road condition. In MATEC web of conferences, volume 173, page 02020. EDP Sciences, doi: 10.1051/matecconf/201817302020.
  5. Hulianytskyi, L. (2017). Search diversification in ant colony optimization algorithms. Theory of optimal solutions, 1:47–57.
  6. Hutsul, T. (2018). Productivity analysis and special conditions of the functioning of the method of geoinformation multiagent optimization of the planning of transport flows of the road network. Urban Planning and Spatial Planning, 68:689–705.
  7. Hutsul, T. and Smirnov, Y. (2017). Comparative accuracy assessment of global dtm and dtm generated from soviet topographic maps for the purposes of road planning. Geodesy and Cartography, 43(4):173–181, doi: doi.org/10.3846/20296991.2017.1412638.
  8. Kalamdhad, A. S., Singh, J., and Dhamodharan, K. (2016). Advances in waste management. Select Proceedings of Recycle, Springer.
  9. Karadimas, N. V., Kolokathi, M., Defteraiou, G., and Loumos, V. (2007). Ant colony system vs arcgis network analyst: the case of municipal solid waste collection. In 5th WSEAS international conference on environment, ecosystems and development, pages 128–34. Citeseer, doi: doi.org/10.13140/2.1.3676.9600.
  10. Khazin, V. (2012). Principles of tracing bypass roads around settlements. Urban Planning and Spatial Planning, 45(3):159–164.
  11. Kochegurova, E., Martynov, Y., Martynova, Y., and Tsapko, S. (2014). Ant colony algorithm for rational route network design of urban public transport. VestnikSibGUTI, 27(3):89–100.
  12. Kuzmin, I. and Lotysh, V. (2012). Ant algorithms. Computer-integrated technologies: education, science, production, 9:61–66.
  13. Lyashchenko, A. (2002). Conceptual modeling of geographic information systems. Bulletin of Geodesy and Cartography, 4:44–50.
  14. Masoumi, Z., Van Genderen, J., and Sadeghi Niaraki, A. (2021). An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments. Geocarto International, 36(2):137–154, doi: 10.1080/10106049.2019.1595176.
  15. Muliarevych, O. (2016). Solving dynamic travelling salesman problem using and colony behavior model in multiagent systems. PhD thesis, Lviv Polytechnic National University.
  16. Qiu, Y. and Xu, X. (2018). Rpsbpt: A route planning scheme with best profit for taxi. In 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pages 121–126. IEEE, doi: 10.1109/MSN.2018.00027.
  17. Shtovba, S. (2004). Ant optimization algorithms. Visnyk VNTU, 4:62–69.
  18. Shuts, V. (2014). Multiagent motion control vehicles in the road network of the city. Iskusstvennyi Intellekt, (4):123–128.
  19. Subbotin, S., Oleynik, A., and Oleynik, O. (2009). Non-iterative, evolutionary and multiagent methods for the synthesis of fuzzy and neural network models. ZNTU, Zaporozhye.
  20. Vardomatskaja, A., Sharstniou, U., and Alekseeva, Y. (2016). Route optimization using graph theory in the application package. Vestnik of Vitebsk State Technological University, 30(1):130–139.
  21. Vodák, R., Bíl, M., and Křivánková, Z. (2018). A modified ant colony optimization algorithm to increase the speed of the road network recovery process after disasters. International journal of disaster risk reduction, 31:1092–1106, doi: doi.org/10.1016/j.ijdrr.2018.04.004.
  22. Yamamoto, K. and Li, X. (2018). A safety evaluation method of evacuation routes in urban areas in case of earthquake disasters using ant colony optimization and geographic information systems (short paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi: 10.4230/LIPIcs.GISCIENCE.2018.68.
  23. Yu, K.-M., Lee, M.-G., and Chi, S.-S. (2017). Dynamic path planning based on adaptable ant colony optimization algorithm. In 2017 Sixth International Conference on Future Generation Communication Technologies (FGCT), pages 1–7. IEEE, doi: 10.1109/FGCT.2017.8103732.
  24. Zhang, M., Jiang, Z., Wang, L., and Yao, Y. (2017). Research on parallel ant colony algorithm for 3d terrain path planning. In Asian Simulation Conference, pages 74–82. Springer, doi: 10.1007/978-981-10-6463-0_7.
DOI: https://doi.org/10.2478/rgg-2021-0002 | Journal eISSN: 2391-8152 | Journal ISSN: 0867-3179
Language: English
Page range: 1 - 8
Submitted on: Apr 20, 2021
Accepted on: Sep 16, 2021
Published on: Oct 26, 2021
Published by: Warsaw University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 Taras Hutsul, Yurii Karpinskyi, published by Warsaw University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.